23 research outputs found

    An “In-Depth” Description of the Small Non-coding RNA Population of Schistosoma japonicum Schistosomulum

    Get PDF
    Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, which afflicts more than 200 million people yearly in tropical regions of South America, Asia and Africa. A promising approach to the control of this and many other diseases involves the application of our understanding of small non-coding RNA function to the design of safe and effective means of treatment. In a previous study, we identified five conserved miRNAs from the adult stage of Schistosoma japonicum. Here, we applied Illumina Solexa high-throughput sequencing methods (deep sequencing) to investigate the small RNAs expressed in S. japonicum schistosomulum (3 weeks post-infection). This has allowed us to examine over four million sequence reads including both frequently and infrequently represented members of the RNA population. Thus we have identified 20 conserved miRNA families that have orthologs in well-studied model organisms and 16 miRNA that appear to be specific to Schistosoma. We have also observed minor amounts of heterogeneity in both 3′ and 5′ terminal positions of some miRNA as well as RNA fragments resulting from the processing of miRNA precursor. An investigation of the genomic arrangement of the 36 identified miRNA revealed that seven were tightly linked in two clusters. We also identified members of the small RNA population whose structure indicates that they are part of an endogenously derived RNA silencing pathway, as evidenced by their extensive complementarities with retrotransposon and retrovirus-related Pol polyprotein from transposon

    Incorporation of terminal phosphorothioates into oligonucleotides

    No full text

    Miscellaneous coupling reagents

    No full text

    Incorporation of terminal phosphorothioates into oligonucleotides.

    Get PDF
    Considerable effort has been directed towards studying the structure and function of oligonucleotides and several approaches rely on the attachment of reporter groups to oligonucleotides. We report here the introduction of 3'- and 5'-terminal phosphorothioates into heptameric oligonucleotides and their post-synthetic modification with several reporter groups. The synthesis of terminal phosphorothioates is based on the coupling of a ribonucleoside phosphoramidite at the first or last nucleotide, respectively, which, after sulphurization, is removed by sequential oxidation of the vicinal hydroxyl groups and then beta-elimination. Product formation is of the order of 95%. The ratio of phosphorothioate- versus phosphate-terminated oligodeoxynucleotides as analysed by electrophoresis on a Hg2+gel is in general 85/15. Examples for the reactivity of the terminal phosphorothioates for conjugation with cholesterol, bimane and for sulphydryl exchange are described

    Miscellaneous coupling reagents

    No full text

    Analysis of miRNA Modifications

    Get PDF
    After transcription, a large number of cellular RNAs employ modifications to increase their diversity and functional potential. Modifications can occur on the base, ribose, or both, and are important steps in the maturation of many RNAs. Our lab recently showed that plant microRNAs (miRNAs) possess a 2′-O-methyl group on the ribose of the 3′ terminal nucleotide, and that this methyl group is added after miRNA/miRNA* formation. One function of this modification is to protect miRNAs from 3′ terminal uridylation by an unknown enzymatic activity. It is possible that uridylation of miRNAs triggers their degradation. Here we describe a protocol to purify a specific miRNA in order to determine its molecular mass so that the presence of a modification can be inferred, an in vivo method to detect 3′ terminal modification of miRNAs, and an (α-32P) dATP incorporation assay to study 3′ terminal uridylation of miRNAs
    corecore