11 research outputs found
Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes
Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HR(max)) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(−1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUC(OGTT)) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUC(OGTT) in IGT only (P < 0.05), and the decrease in glucose iAUC(OGTT) was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training
Human Visceral Adipose Tissue Macrophages Are Not Adequately Defined by Standard Methods of Characterization
Obesity is associated with a state of chronic low-grade inflammation both systemically and within specific tissues, including adipose tissue (AT). In murine models of obesity, there is a shift in the inflammatory profile of the AT immune cells, with an accumulation of proinflammatory M1 macrophages that surround the expanding adipocyte. However, much less is known about the immune cell composition and how to best define AT macrophages in humans. Objective. The goals of the current study were to determine the contribution of macrophages to the stromal vascular fraction (SVF) in lean versus obese human visceral AT (VAT); examine the expression of common M1, M2, and pan macrophage markers; and determine the association of specific macrophage types with known biomarkers of obesity-related cardiometabolic disease. Research Design and Methods. VAT biopsies were obtained from obese (n=50) and lean (n=8) patients during elective surgery. Adipocytes and SVF were isolated, and the SVF was subjected to flow cytometry analyses. Results. Our results indicate that VAT macrophages are increased in obesity and associate with biomarkers of CVD but that many macrophages do not fall into currently defined M1/M2 classification system based on CD206 receptor expression levels. Conclusions. VAT macrophages are increased in obese subjects, but the current markers used to define macrophage populations are inadequate to distinguish differences in human obesity. Further studies are needed to delineate the function of AT macrophages in the maintenance and progression of human AT inflammation in obesity
Loss of Antigen Presentation in Adipose Tissue Macrophages or in Adipocytes, but Not Both, Improves Glucose Metabolism
Macrophages, B cells, and adipocytes are among the adipose tissue (AT) APCs that differentiate and activate naive CD4(+) T cells. Mice with adipocyte loss of MHC class II (MHC II) are more insulin sensitive. Because macrophages are professional APCs, mice with genetic myeloid MHC II depletion (myeloid MHC II knockout [mMHCII(-/-)]) were created and metabolically characterized. FITC(+) glucan-coated particles (glucan-encapsulated small interfering RNA [siRNA] particles [GeRPs]) were also used to target MHC II knockout specifically in AT macrophages (ATMs). Mice with total body mMHCII(-/-) were generated by crossing LyzMCre with H2Ab1 floxed mice. For specific ATM depletion of H2Ab1, GeRPs containing H2Ab1 siRNA were administered to high-fat diet-fed C57BL/6 mice. Unexpectedly, mMHCII(-/-) mice had loss of both macrophage and adipocyte H2Ab1, one of only two Ag-presenting arms; thus, neither cell could present Ag and activate CD4(+) T cells. This inability led to a reduction in AT immunosuppressive regulatory T cells, increased AT CD8(+) T cells, and no improvement in systemic metabolism. Thus, with combined systemic myeloid and adipocyte MHC II loss, the impact of ATM-specific alterations in APC activity could not be delineated. Therefore, GeRPs containing H2Ab1 siRNA were administered to specifically reduce ATM H2Ab1 which, in contrast, revealed improved glucose tolerance. In conclusion, loss of either ATM or adipocyte APC function, but not both, improves systemic glucose metabolism because of maintenance of AT regulatory T cells
Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils
Abstract Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration. Only mice receiving high-fat diet and stool from subjects with obesity show enrichment of VAT neutrophils, suggesting donor microbiome and recipient diet determine VAT neutrophilia. A rise in pro-inflammatory CD4+ Th1 cells and a drop in immunoregulatory T cells in VAT only follows if there is a transient spike in neutrophils. Human VAT neutrophils exhibit a distinct gene expression pattern that is found in different human tissues, including tumors. VAT neutrophils and bacteria may be a novel therapeutic target for treating inflammatory-driven complications of obesity, including insulin resistance and colon cancer