230 research outputs found
What We Have Learned By Studying The P5 Hall Thruster
The Hall thruster is an advanced spacecraft propulsion system that uses electrical power provided by the spacecraft to generate thrust by ionizing and accelerating ions to high velocities. While Hall thrusters have been tested in laboratories for nearly forty years and first flew in space some thirty years ago, little is known about the plasma within these devices. This lack of knowledge has led to the expensive trial‐and‐error approach practiced in Hall thruster development over the years. The difficulty in collecting interior plasma data stems from the intense heat flux a probe receives. While optical measurements can give some information about the plasma, probes provide data about the plasma that are not accessible with optical approaches. Discharge channel plasma data are vital for extending our understanding of Hall thruster physical processes, for validating thruster models, and for developing advanced, next‐generation engines for high ΔV missions. The paper summarizes the results of research aimed at using probes to characterize the internal plasma structure of a laboratory Hall thruster developed specifically for this purpose. Internal plasma parameter measurements were accomplished by using the unique High‐speed Axial Reciprocating Probe (HARP) system, which enabled, for the first time, the insertion and removal of probes from the Hall thruster discharge channel while minimizing perturbation to thruster operation. The system was used with an emissive probe to map plasma potential, and a double Langmuir probe to map electron temperature and ion number density. Thruster perturbation, determined by monitoring discharge current, was less than 10% for the majority of measurements. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87932/2/533_1.pd
Monoclinic and triclinic phases in higher-order Devonshire theory
Devonshire theory provides a successful phenomenological description of many
cubic perovskite ferroelectrics such as BaTiO3 via a sixth-order expansion of
the free energy in the polar order parameter. However, the recent discovery of
a novel monoclinic ferroelectric phase in the PZT system by Noheda et al.
(Appl. Phys. Lett. 74, 2059 (1999)) poses a challenge to this theory. Here, we
confirm that the sixth-order Devonshire theory cannot support a monoclinic
phase, and consider extensions of the theory to higher orders. We show that an
eighth-order theory allows for three kinds of equilibrium phases in which the
polarization is confined not to a symmetry axis but to a symmetry plane. One of
these phases provides a natural description of the newly observed monoclinic
phase. Moreover, the theory makes testable predictions about the nature of the
phase boundaries between monoclinic, tetragonal, and rhombohedral phases. A
ferroelectric phase of the lowest (triclinic) symmetry type, in which the
polarization is not constrained by symmetry, does not emerge until the
Devonshire theory is carried to twelfth order. A topological analysis of the
critical points of the free-energy surface facilitates the discussion of the
phase transition sequences.Comment: 10 pages, with 5 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/dv_pzt/index.htm
Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90664/1/AIAA-2011-1016-314.pd
Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation
Internal plasma potential measurements of a Hall thruster using plasma lens focusing
Magnetic field topology has been found to be a central design concern for high-efficiency Hall thrusters. For future improvements in Hall thruster design, it is necessary to better understand the effects that magnetic field topology has on the internal plasma structure. The Plasmadynamics and Electric Propulsion Laboratory’s High-speed Axial Reciprocating Probe system is used in conjunction with a floating emissive probe to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propul. Power 22, 721 (2006); 22, 732 (2006)]. Measurements are taken at 300 and 500 V500V with a xenon propellant. Electron temperature and electric field are also measured and reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic field lines. Moreover, in some cases the ions are accelerated strongly toward the center of the discharge channel. The agreement between magnetic field lines and equipotential lines is best for high-voltage operation. These results have strong implications on the performance and lifetime optimization of Hall thrusters.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87754/2/103504_1.pd
Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant
For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory’s High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V600V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87759/2/093502_1.pd
Neutral density map of Hall thruster plume expansion in a vacuum chamber
A neutral background pressure map of the large vacuum test facility (LVTF) is presented. The LVTF is mapped at cold anode flow rates of 5.25, 10.46, and 14.09 mg/s14.09mg∕s. In addition, neutral background pressure maps are created at hot anode (i.e., discharge on) flow rates of 5.25 and 10.46 mg/s10.46mg∕s for discharge voltages of 300 and 500 V500V, corresponding to P5 Hall thruster operating conditions ranging from 1.5 to 5.0 kW1.5to5.0kW. The chamber pressure is mapped at nominal xenon pumping speeds of 140 000 and 240 000 l/s240000l∕s. The pressure map is performed with a rake consisting of five calibrated Bayard–Alpert hot-cathode ionization gauges. The plume expansion appears to be independent of anode flow rate and facility background pressure. Analysis of axial pressure profiles on the LVTF’s centerline shows that the plume pressure decreases from a maximum at the thruster exit plane down to the facility background pressure at approximately 2 m2m downstream of the exit plane. Comparison of axial pressure profiles on the LVTF’s centerline shows that the neutral density is nearly the same for cold flow and hot flow. The study shows that a cold flow neutral density background map accurately characterizes the neutral density in an operating Hall thruster plume.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87890/2/053509_1.pd
Investigation of Channel Interactions in Nested Hall Thruster
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143065/1/1.B36352.pd
Top hat electrostatic analyzer for far-field electric propulsion plume diagnostics
The design, development, and testing of the top hat electric propulsion plume analyzer (TOPAZ) are presented for far-field electric propulsion plume diagnostics. The trend towards high-power thruster development will require plume diagnostic techniques capable of measuring high-energy particles as well as low-energy ions produced from charge-exchange collisions due to elevated facility background pressures. TOPAZ incorporates a “top hat” design with a geometrical analyzer constant of 100 resulting in a wide energy range and a high-energy resolution. SIMION, an ion trajectory analysis program, was used to predict characteristics of the analyzer. An ion beam accelerator system confirms the computational results. TOPAZ provides an energy resolution of 2.7%, field of view of 112°×26°112°×26° (azimuthal by elevation) with an angular resolution in each direction of 2°, and a demonstrated energy-per-charge acceptance range of 5–15 keV5–15keV. An energy profile measurement of the NASA-173Mv1 Hall thruster demonstrates instrument operation in a Hall thruster plume.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87897/2/013505_1.pd
- …
