29 research outputs found
Assessing the acclimatisation to the wild of stocked European graylings Thymallus thymallus by monitoring lipid dynamics and food consumption
This study investigated how 2+-year-old stocked pond-reared European graylings (Thymallus thymallus) acclimatised to a wild environment during six months (May–October 2019) after released. We examined the quantity and composition of lipids in the liver, muscles and visceral adipose tissues (VAT), as well as size parameters, condition factors and stomach contents. Our results showed a low post-stocking recapture rate (5.17%) of stocked fish after 6 months suggesting a poor acclimation to the wild environment. During the six months of monitoring, stocked fishes exhibited a sharp decrease in lipid content in all examined tissues, and, in the final month, lipid content was well below those of wild conspecifics. Stocked graylings preferred risky foraging behaviour and consumed numerous small drift preys with occasional hyperphagic events, thus experiencing strong bioenergetic challenges. Our study reveals that fish cultivated for extended periods struggle to acclimatise to the wild environment and that this commonly used stocking practice seems unsuccessful when aimed at strengthening wild grayling populations
Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster
Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum.We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50)) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt(50) (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines.Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring
Lipidome LC/MS Analysis in the Insect Adaptation and Development Studies
Insects represent very useful experimental model in various branches of biological research. The investigation is driven by economic importance of many insect species, and also by biological features of insects as model organisms such as short period of reproduction, easy breeding and manipulation and, in particular, the minimal regulatory requirements which are associated to the management of vertebrates. Here we report robust and efficient LC/MS/MS methodology for the determination of the physiologically important lipid molecular species in insects. The target metabolites represent polar glycerophos-phopholipids (GPL) and nonpolar lipids diacylglycerols (DG) and triacylglycerols (TG). Combination of the LC/MS data with the subsequent GC fatty acid analysis enables complete structural elucidation of particular lipid species including their fatty acid compositions. The developed methodology was applied to studies of the chill tolerance of the firebug Pyrhocorris appterus. Fields and laboratory experiments were conducted to separate the triggering effects of low temperature, desiccation and diapause progression on the physiological characteristics related to chill tolerance with emphasis on the restructuring of GPL composition. The same effect on the GPL composition was observed during acclimatization in the field and cold acclimation in laboratory. By contrast, the GPL changes related to desiccation and diapause progression were relatively small (Tomčala et al, 2006). In adults of Drosophila melanogaster it has been found that acclimation at 15, 20 and 25°C during preimaginal development affects thermal tolerance and composition of membrane GPLs. Low temperature acclimation was associated with increase in proportion of ethanolamine at the expense of choline in GPLS. Relatively small, but statistically significant changes in lipid molecular compositon were observed with decreasing acclimation temperature (Overgard et al, 2008). Hormonal treatment studies on insect model Locusta migratoria showed a heterogeneous distribution of individual DGs in haemolymph after the hormone application and revealed that mobilization of the DGs is molecular species-specific with the highest proportion of DG 16:0/18:1 and forming in summary about 20% of the total mobilized DG content. Additional analysis of fat body triacylglycerols revealed that the AKH mobilizes the DGs specifically with the preference of those possessing the unsaturated C18 fatty acids (FAs). The fat body FAs with more than 18 carbons did not participate on the mobilization (Tomcala et al, 2009). The LC/MS methodology was further applied to lipid composition studies of several samples with very diverse biological origin (fish, human blood etc.) and was proved to be universally applicable to the wide scope of biological samples
Fatty Acid Biosynthesis in Chromerids
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0–C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites
Table_4_Disruption of Adipokinetic Hormone Mediated Energy Homeostasis Has Subtle Effects on Physiology, Behavior and Lipid Status During Aging in Drosophila.PDF
<p>The impact of disruption of adipokinetic hormone (AKH) signaling was studied during aging in Drosophila in a sexually dimorphic manner. A mutant (Akh<sup>1</sup>) producing a non-functional AKH peptide was compared with isogenized wild-type controls (w<sup>1118</sup>), and Akh-rescue line where AKH was ectopically expressed in the mutant background (EE-Akh). Longevity, fecundity, and locomotor activity rhythms remained unaffected by lack of AKH signaling. While the strength of rhythms declined in general with age across all fly lines tested this was more so in case of Akh<sup>1</sup> flies. Negative geotaxis was significantly impaired in Akh<sup>1</sup> flies. Only young Akh<sup>1</sup> flies of both sexes and old Akh<sup>1</sup> females showed significantly higher body weight compared to age-matched iso-control flies (except in case of EE-Akh). Expression of genes involved in energy homeostasis and aging indicated that dTOR and Akt expression were elevated in Akh<sup>1</sup> flies compared to other genotypes, whereas AMPK and dFoxO expression levels were significantly reduced. Multivariate analysis of the distribution of lipid species revealed a significant accumulation of specific diglyceride (DG) and triglyceride (TG) lipid species, irrespective of sex, attributable in part due to lack of AKH. Moreover, irrespective of lack of AKH, older flies of all genotypes accumulated TGs. Taken together, the results strongly suggest that disruption of AKH has very subtle effects on physiology, behavior and lipid status during aging.</p
Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon (<i>Acipenser ruthenus</i>)
DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons
Table_2_Disruption of Adipokinetic Hormone Mediated Energy Homeostasis Has Subtle Effects on Physiology, Behavior and Lipid Status During Aging in Drosophila.PDF
<p>The impact of disruption of adipokinetic hormone (AKH) signaling was studied during aging in Drosophila in a sexually dimorphic manner. A mutant (Akh<sup>1</sup>) producing a non-functional AKH peptide was compared with isogenized wild-type controls (w<sup>1118</sup>), and Akh-rescue line where AKH was ectopically expressed in the mutant background (EE-Akh). Longevity, fecundity, and locomotor activity rhythms remained unaffected by lack of AKH signaling. While the strength of rhythms declined in general with age across all fly lines tested this was more so in case of Akh<sup>1</sup> flies. Negative geotaxis was significantly impaired in Akh<sup>1</sup> flies. Only young Akh<sup>1</sup> flies of both sexes and old Akh<sup>1</sup> females showed significantly higher body weight compared to age-matched iso-control flies (except in case of EE-Akh). Expression of genes involved in energy homeostasis and aging indicated that dTOR and Akt expression were elevated in Akh<sup>1</sup> flies compared to other genotypes, whereas AMPK and dFoxO expression levels were significantly reduced. Multivariate analysis of the distribution of lipid species revealed a significant accumulation of specific diglyceride (DG) and triglyceride (TG) lipid species, irrespective of sex, attributable in part due to lack of AKH. Moreover, irrespective of lack of AKH, older flies of all genotypes accumulated TGs. Taken together, the results strongly suggest that disruption of AKH has very subtle effects on physiology, behavior and lipid status during aging.</p