9 research outputs found

    Alternative to the Conventional Heating and Cooling Systems in Public Buildings

    Get PDF
    The paper presents an alternative system for heating and cooling in public buildings. The system was designed for the retrofitted building of the Slovene Ethnographic Museum (SEM) where it was also extensively tested. The installed system includes radiant wall mounted panels for heating and cooling, localized automated tangential fans for cooling and ventilation and a centralized building management system for the regulation and supervision of the performance. The efficiency of the system was thoroughly investigated through a series of experiments conducted prior to the renovation of the building as well as after the museum was put into service. The application of the described system resulted in substantial reduction of energy consumption, better internal thermal conditions and lower investment costs for the Heating, Ventilation and Air Conditioning (HVAC) system of the entire building. (C)2010 Journal of Mechanical Engineering. All rights reserved

    Alternative to the Conventional Heating and Cooling Systems in Public Buildings

    Full text link
    The paper presents an alternative system for heating and cooling in public buildings. The system was designed for the retrofitted building of the Slovene Ethnographic Museum (SEM) where it was also extensively tested. The installed system includes radiant wall mounted panels for heating and cooling, localized automated tangential fans for cooling and ventilation and a centralized building management system for the regulation and supervision of the performance. The efficiency of the system was thoroughly investigated through a series of experiments conducted prior to the renovation of the building as well as after the museum was put into service. The application of the described system resulted in substantial reduction of energy consumption, better internal thermal conditions and lower investment costs for the Heating, Ventilation and Air Conditioning (HVAC) system of the entire building. (C)2010 Journal of Mechanical Engineering. All rights reserved

    User-centred healing-oriented conditions in the design of hospital environments

    Full text link
    Design approaches towards energy efficient hospitals often result in a deteriorated indoor environmental quality, adverse health and comfort outcomes, and is a public health concern. This research presents an advanced approach to the design of a hospital environment based on a stimulative paradigm of healing to achieve not only healthy but also comforting conditions. A hospital room for severely burn patient was considered as one of the most demanding spaces. The healing environment was designed as a multi-levelled, dynamic process including the characteristics of users, building and systems. The developed integral user-centred cyber-physical system (UCCPS) was tested in a test room and compared to the conventional system. The thermodynamic responses of burn patients, health care worker and visitor were simulated by using modified human body exergy models. In a healing environment, UCCPS enables optimal thermal balance, individually regulated according to the user specifics. For burn patient it creates optimal healing-oriented conditions with the lowest possible human body exergy consumption (hbExC), lower metabolic thermal exergy, lower sweat exhalation, evaporation, lower radiation and convection. For healthcare workers and visitors, thermally comfortable conditions are attained with minimal hbExC and neutral thermal load on their bodies. The information on this is an aid in integral hospital design, especially for future extensive renovations and environmental health actions

    Mutual Influence of External Wall Thermal Transmittance, Thermal Inertia, and Room Orientation on Office Thermal Comfort and Energy Demand

    No full text
    Upgrades in building energy efficiency codes led to differences between buildings designed according to outdated codes and those with most recent requirements. In this context, our study investigates the influence of external wall thermal transmittance, thermal inertia, and orientation on energy demand (heating, cooling) and occupant thermal comfort. Simulation models of an office building were designed, varying (i) the thermal transmittance values (0.20 and 0.60 W/(m2K)), (ii) the room orientation (four cardinal directions), and (iii) the wall thermal inertia (approximately 60 kJ/(m2K) for low and 340 kJ/(m2K) for high thermal inertia. The energy demand for heating and cooling seasons was calculated for Ljubljana using EnergyPlus 9.0.0 software. The reduction of the external wall thermal transmittance value from 0.6 W/(m2K) to 0.2 W/(m2K) contributes to significant energy savings (63% for heating and 37% for cooling). Thermal inertia showed considerable potential for energy savings, especially in the cooling season (20% and 13%, depending on the external wall insulation level). In addition, the orientation proved to have a notable impact on heating and cooling demand, however not as pronounced as thermal inertia (up to 7% total energy demand). Comparison of the thermal comfort results showed that when internal air temperatures are identically controlled in all the rooms (i.e., internal air temperature is not an influencing factor), the external wall thermal transmittance, thermal inertia, and room orientation show negligible influence on the average occupant thermal comfort. The simultaneous achievement of thermally comfortable conditions in the working environment and low energy use can only be achieved by simultaneously considering the U-value and thermal inertia
    corecore