3,088 research outputs found
Correlation and prediction of dynamic human isolated joint strength from lean body mass
A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass
Noise-enabled precision measurements of a Duffing nanomechanical resonator
We report quantitative experimental measurements of the nonlinear response of
a radiofrequency mechanical resonator, with very high quality factor, driven by
a large swept-frequency force. We directly measure the noise-free transition
dynamics between the two basins of attraction that appear in the nonlinear
regime, and find good agreement with those predicted by the one-dimensional
Duffing equation of motion. We then measure the response of the transition
rates to controlled levels of white noise, and extract the activation energy
from each basin. The measurements of the noise-induced transitions allow us to
obtain precise values for the critical frequencies, the natural resonance
frequency, and the cubic nonlinear parameter in the Duffing oscillator, with
direct applications to high sensitivity parametric sensors based on these
resonators.Comment: 5 pages, 5 figure
Influence of Teacher Support and Personal Relevance on Academic Self-Efficacy and Enjoyment of Mathematics Lessons: A Structural Equation Modeling Approach
The purpose of our study was to examine the effects of two psychosocial features of the classroom environment (teacher support and personal relevance) on college students’ academic self-efficacy and enjoyment of mathematics lessons. Data collected from 352 mathematics students attending three higher education institutions in the United Arab Emirates were used to validate the questionnaires and to investigate the hypothesized relationships. Structural equation modeling analysis suggests that teacher support and personal relevance are influential predictors of enjoyment of mathematics lessons and academic self-efficacy. L’objectif de cette étude est d’examiner les effets de deux facteurs psychosociaux de la salle de classe (soutien des enseignants et pertinence personnelle) sur l’auto-efficacité académique des étudiants universitaires et du plaisir qu’ils retirent des cours de mathématiques. On a puisé dans des données recueillies chez 352 étudiants en mathématiques de trois institutions d’études supérieures aux Émirats arabes unis pour valider les questionnaires et vérifier les relations postulées. Une analyse de la modélisation par équation structurelle laisse supposer que le soutien des enseignants et la pertinence personnelle ont constitué des facteurs de prévision influents quant au plaisir que retirent les étudiants des cours de mathématiques et à leur auto-efficacité académique
Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis
Miniaturized gas chromatography (GC) systems can provide fast, quantitative analysis of chemical vapors in an ultrasmall package. We describe a chemical sensor technology based on resonant nanoelectromechanical systems (NEMS) mass detectors that provides the speed, sensitivity, specificity, and size required by the microscale GC paradigm. Such NEMS sensors have demonstrated detection of subparts per billion (ppb) concentrations of a phosphonate analyte. By combining two channels of NEMS detection with an ultrafast GC front-end, chromatographic analysis of 13 chemicals was performed within a 5 s time window
Using teacher action research to promote constructivist learning environments in South Africa
The primary focus was to assist South African teachers to become reflective practitioners in their daily mathematics classroom teaching. The study involved a combination of quantitative and qualitative research methods. Quantitative data were collected using the Constructivist Learning Environment Survey (CLES) to assess learners' perceptions of the emphasis on constructivism in the classroom environment. In the first phase of the study, the CLES was administered to 1 864 learners in 43 classes and analysed to determine whether the CLES is valid and reliable for use in South Africa. As well, descriptive analysis was used to generate graphical profiles of learners' perceptions of the actual and preferred learning environment for each class. During the second 12-week intervention phase, two teachers used the profiles to assist them to develop strategies aimed at improving the constructivist orientation of their classroom learning environments. The teachers implemented strategies and maintained a daily journal as a means of reflecting on their teaching practices. At the end of the 12 weeks, the CLES was re-administered to learners to determine whether their learners' perceptions of the constructivist emphasis in their classroom learning environments had changed.
South African Journal of Education Vol.24(4) 2004: 245-25
Increasing the susceptibility of the rat 208F fibroblast cell line to radiation-induced apoptosis does not alter its clonogenic survival dose-response.
Recent studies have suggested a correlation between the rate and incidence of apoptosis and the radiation response of particular cell lines. However, we found that increasing the rate of induction of apoptosis in the fibroblast line 208F, by transfecting it with human c-myc, did not lead to a change in its clonogenic survival dose-response for either gamma-irradiation or 125I-induced DNA damage. It was also found that expression of mutant (T24) Ha-ras in the 208F line appeared to decrease the level of apoptosis per mitosis after irradiation and inhibited the formation of nucleosomal ladders, but did not affect either the onset of the morphological features of apoptosis or the clonogenic survival dose-response of the cells to either gamma-irradiation or 125I-induced DNA damage. Our findings suggest that it may be incorrect to make predictions about the radiosensitivity of cells based only on knowledge of their mode of death
Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications
We have developed arrays of nanomechanical systems (NEMS) by large-scale integration, comprising thousands of individual nanoresonators with densities of up to 6 million NEMS per square centimeter. The individual NEMS devices are electrically coupled using a combined series-parallel configuration that is extremely robust with respect to lithographical defects and mechanical or electrostatic-discharge damage. Given the large number of connected nanoresonators, the arrays are able to handle extremely high input powers (>1 W per array, corresponding to <1 mW per nanoresonator) without excessive heating or deterioration of resonance response. We demonstrate the utility of integrated NEMS arrays as high-performance chemical vapor sensors, detecting a part-per-billion concentration of a chemical warfare simulant within only a 2 s exposure period
Pattern Reduction in Paper Cutting
A large part of the paper industry involves supplying customers with reels of specified width in specifed quantities. These 'customer reels' must be cut from a set of wider 'jumbo reels', in as economical a way as possible. The first priority is to minimize the waste, i.e. to satisfy the customer demands using as few jumbo reels as possible. This is an example of the one-dimensional cutting stock problem, which has an extensive literature. Greycon have developed cutting stock algorithms which they include in their software packages.
Greycon's initial presentation to the Study Group posed several questions, which are listed below, along with (partial) answers arising from the work described in this report.
(1) Given a minimum-waste solution, what is the minimum number of patterns required?
It is shown in Section 2 that even when all the patterns appearing in minimum-waste solutions are known, determining the minimum number of patterns may be hard. It seems unlikely that one can guarantee to find the minimum number of patterns for large classes of realistic problems with only a few seconds on a PC available.
(2) Given an n → n-1 algorithm, will it find an optimal solution to the minimum- pattern problem?
There are problems for which n → n - 1 reductions are not possible although a more dramatic reduction is.
(3) Is there an efficient n → n-1 algorithm?
In light of Question 2, Question 3 should perhaps be rephrased as 'Is there an efficient algorithm to reduce n patterns?' However, if an algorithm guaranteed to find some reduction whenever one existed then it could be applied iteratively to minimize the number of patterns, and we have seen this cannot be done easily.
(4) Are there efficient 5 → 4 and 4 → 3 algorithms?
(5) Is it worthwhile seeking alternatives to greedy heuristics?
In response to Questions 4 and 5, we point to the algorithm described in the report, or variants of it. Such approaches seem capable of catching many higher reductions.
(6) Is there a way to find solutions with the smallest possible number of single patterns?
The Study Group did not investigate methods tailored specifically to this task, but the algorithm proposed here seems to do reasonably well. It will not increase the number of singleton patterns under any circumstances, and when the number of singletons is high there will be many possible moves that tend to eliminate them.
(7) Can a solution be found which reduces the number of knife changes?
The algorithm will help to reduce the number of necessary knife changes because it works by bringing patterns closer together, even if this does not proceed fully to a pattern reduction. If two patterns are equal across some of the customer widths, the knives for these reels need not be changed when moving from one to the other
The influence of the representative volume element (RVE) size on the homogenized response of cured fiber composites
The influence of the representative volume element (RVE) size (in terms of fiber packing and number of fibers for a given fiber-volume fraction) on the residual stresses created during the curing process of a continuous fiber-reinforced polymer matrix tow is investigated with the ultimate goal of finding a minimum unit cell size that can be used later for a homogenization procedure to calculate the response of woven fiber textile composites and in particular, fiber tows. A novel network curing model for the solidification of epoxy is used to model the curing process. The model takes into account heat conduction, cure kinetics and the creation of networks in a continuously shape changing body. The model is applied to the curing of a fiber/matrix RVE. The results for the minimum size of the RVE, obtained on the basis of the curing problem, are compared with a similar RVE, modeled as an elastic–plastic solid subjected to external loads, in order to compare the minimum RVE sizes obtained on the basis of different boundary value problem solutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98620/1/0965-0393_20_7_075007.pd
- …