647 research outputs found

    Epitaxial growth and surface reconstruction of CrSb(0001)

    Get PDF
    Smooth CrSb(0001) films have been grown by molecular beam epitaxy on MnSb(0001) – GaAs(111) substrates. CrSb(0001) shows (2 × 2), triple domain (1 × 4) and (√3×√3)R30° reconstructed surfaces as well as a (1 × 1) phase. The dependence of reconstruction on substrate temperature and incident fluxes is very similar to MnSb(0001)

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201

    Empires and Percolation: Stochastic Merging of Adjacent Regions

    Full text link
    We introduce a stochastic model in which adjacent planar regions A,BA, B merge stochastically at some rate λ(A,B)\lambda(A,B), and observe analogies with the well-studied topics of mean-field coagulation and of bond percolation. Do infinite regions appear in finite time? We give a simple condition on λ\lambda for this {\em hegemony} property to hold, and another simple condition for it to not hold, but there is a large gap between these conditions, which includes the case λ(A,B)≡1\lambda(A,B) \equiv 1. For this case, a non-rigorous analytic argument and simulations suggest hegemony.Comment: 13 page

    Random multi-index matching problems

    Full text link
    The multi-index matching problem (MIMP) generalizes the well known matching problem by going from pairs to d-uplets. We use the cavity method from statistical physics to analyze its properties when the costs of the d-uplets are random. At low temperatures we find for d>2 a frozen glassy phase with vanishing entropy. We also investigate some properties of small samples by enumerating the lowest cost matchings to compare with our theoretical predictions.Comment: 22 pages, 16 figure

    Entropy-driven cutoff phenomena

    Full text link
    In this paper we present, in the context of Diaconis' paradigm, a general method to detect the cutoff phenomenon. We use this method to prove cutoff in a variety of models, some already known and others not yet appeared in literature, including a chain which is non-reversible w.r.t. its stationary measure. All the given examples clearly indicate that a drift towards the opportune quantiles of the stationary measure could be held responsible for this phenomenon. In the case of birth- and-death chains this mechanism is fairly well understood; our work is an effort to generalize this picture to more general systems, such as systems having stationary measure spread over the whole state space or systems in which the study of the cutoff may not be reduced to a one-dimensional problem. In those situations the drift may be looked for by means of a suitable partitioning of the state space into classes; using a statistical mechanics language it is then possible to set up a kind of energy-entropy competition between the weight and the size of the classes. Under the lens of this partitioning one can focus the mentioned drift and prove cutoff with relative ease.Comment: 40 pages, 1 figur

    Duplication-divergence model of protein interaction network

    Full text link
    We show that the protein-protein interaction networks can be surprisingly well described by a very simple evolution model of duplication and divergence. The model exhibits a remarkably rich behavior depending on a single parameter, the probability to retain a duplicated link during divergence. When this parameter is large, the network growth is not self-averaging and an average vertex degree increases algebraically. The lack of self-averaging results in a great diversity of networks grown out of the same initial condition. For small values of the link retention probability, the growth is self-averaging, the average degree increases very slowly or tends to a constant, and a degree distribution has a power-law tail.Comment: 8 pages, 13 figure

    Anomalous scaling due to correlations: Limit theorems and self-similar processes

    Full text link
    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, justify their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance.Comment: Through text revision. 15 pages, 3 figure

    Random tree growth by vertex splitting

    Full text link
    We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalises the preferential attachment model and Ford's α\alpha-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from one to infinity, depending on the parameters of the model.Comment: 47 page

    Unicyclic Components in Random Graphs

    Full text link
    The distribution of unicyclic components in a random graph is obtained analytically. The number of unicyclic components of a given size approaches a self-similar form in the vicinity of the gelation transition. At the gelation point, this distribution decays algebraically, U_k ~ 1/(4k) for k>>1. As a result, the total number of unicyclic components grows logarithmically with the system size.Comment: 4 pages, 2 figure
    • …
    corecore