59 research outputs found

    A versatile facility for the calibration of X-ray polarimeters with polarized and unpolarized controlled beams

    Full text link
    We devised and built a versatile facility for the calibration of the next generation X-ray polarimeters with unpolarized and polarized radiation. The former is produced at 5.9 keV by means of a Fe55 radioactive source or by X-ray tubes, while the latter is obtained by Bragg diffraction at nearly 45 degrees. Crystals tuned with the emission lines of X-ray tubes with molybdenum, rhodium, calcium and titanium anodes are employed for the efficient production of highly polarized photons at 2.29, 2.69, 3.69 and 4.51 keV respectively. Moreover the continuum emission is exploited for the production of polarized photons at 1.65 keV and 2.04 keV and at energies corresponding to the higher orders of diffraction. The photons are collimated by means of interchangeable capillary plates and diaphragms, allowing a trade-off between collimation and high fluxes. The direction of the beam is accurately arranged by means of high precision motorized stages, controlled via computer so that long and automatic measurements can be done. Selecting the direction of polarization and the incidence point we can map the response of imaging devices to both polarized and unpolarized radiation. Changing the inclination of the beam we can study the systematic effects due to the focusing of grazing incidence optics and the feasibility of instruments with large field of view.Comment: 12 pages, 11 figure

    An X-ray Polarimeter for HXMT Mission

    Get PDF
    The development of micropixel gas detectors, capable to image tracks produced in a gas by photoelectrons, makes possible to perform polarimetry of X-ray celestial sources in the focus of grazing incidence X-ray telescopes. HXMT is a mission by the Chinese Space Agency aimed to survey the Hard X-ray Sky with Phoswich detectors, by exploitation of the direct demodulation technique. Since a fraction of the HXMT time will be spent on dedicated pointing of particular sources, it could host, with moderate additional resources a pair of X-ray telescopes, each with a photoelectric X-ray polarimeter in the focal plane. We present the design of the telescopes and the focal plane instrumentation and discuss the performance of this instrument to detect the degree and angle of linear polarization of some representative sources. Notwithstanding the limited resources the proposed instrument can represent a breakthrough in X-ray Polarimetry.Comment: 10 pages, 9 figure

    The Gas Pixel Detector as an X-ray photoelectric polarimeter with a large field of view

    Full text link
    The Gas Pixel Detector (GPD) is a new generation device which, thanks to its 50 um pixels, is capable of imaging the photoelectrons tracks produced by photoelectric absorption in a gas. Since the direction of emission of the photoelectrons is strongly correlated with the direction of polarization of the absorbed photons, this device has been proposed as a polarimeter for the study of astrophysical sources, with a sensitivity far higher than the instruments flown to date. The GPD has been always regarded as a focal plane instrument and then it has been proposed to be included on the next generation space-borne missions together with a grazing incidence optics. Instead in this paper we explore the feasibility of a new kind of application of the GPD and of the photoelectric polarimeters in general, i.e. an instrument with a large field of view. By means of an analytical treatment and measurements, we verify if it is possible to preserve the sensitivity to the polarization for inclined beams, opening the way for the measurement of X-ray polarization for transient astrophysical sources. While severe systematic effects arise for inclination greater than about 20 degrees, methods and algorithms to control them are discussed.Comment: 11 pages, 8 figure

    Re-testing the JET-X Flight Module No. 2 at the PANTER facility

    Full text link
    The Joint European X-ray Telescope (JET-X) was the core instrument of the Russian Spectrum-X-gamma space observatory. It consisted of two identical soft X-ray (0.3 - 10 keV) telescopes with focusing optical modules having a measured angular resolution of nearly 15 arcsec. Soon after the payload completion, the mission was cancelled and the two optical flight modules (FM) were brought to the Brera Astronomical Observatory where they had been manufactured. After 16 years of storage, we have utilized the JET-X FM2 to test at the PANTER X-ray facility a prototype of a novel X-ray polarimetric telescope, using a Gas Pixel Detector (GPD) with polarimetric capabilities in the focal plane of the FM2. The GPD was developed by a collaboration between INFN-Pisa and INAF-IAPS. In the first phase of the test campaign, we have re-tested the FM2 at PANTER to have an up-to-date characterization in terms of angular resolution and effective area, while in the second part of the test the GPD has been placed in the focal plane of the FM2. In this paper we report the results of the tests of the sole FM2, using an unpolarized X-ray source, comparing the results with the calibration done in 1996.Comment: Author's accepted manuscript posted to arXiv.org as permitted by Springer's Self-Archiving Policy. The final publication is available at http://rd.springer.com/article/10.1007%2Fs10686-013-9365-

    An X-ray polarimeter for hard X-ray optics

    Get PDF
    Development of multi-layer optics makes feasible the use of X-ray telescope at energy up to 60-80 keV: in this paper we discuss the extension of photoelectric polarimeter based on Micro Pattern Gas Chamber to high energy X-rays. We calculated the sensitivity with Neon and Argon based mixtures at high pressure with thick absorption gap: placing the MPGC at focus of a next generation multi-layer optics, galatic and extragalactic X-ray polarimetry can be done up till 30 keV.Comment: 12 pages, 7 figure

    POLARIX: a pathfinder mission of X-ray polarimetry

    Full text link
    Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 arcmin ×\times 15 arcmin and with an energy resolution of 20 % at 6 keV. The Minimum Detectable Polarization is 12 % for a source having a flux of 1 mCrab and 10^5 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher.The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75 % open to the community while 25 % + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument.Comment: 42 pages, 28 figure

    X-ray polarimetry on-board HXMT

    Full text link
    The development of micropixel gas detectors, capable to image tracks produced in a gas by photoelectrons, makes possible to perform polarimetry of X-ray celestial sources in the focus of grazing incidence X-ray telescopes. HXMT is a mission by the Chinese Space Agency aimed to survey the Hard X-ray Sky with Phoswich detectors, by exploitation of the direct demodulation technique. Since a fraction of the HXMT time will be spent on dedicated pointing of particular sources, it could host, with moderate additional resources a pair of X-ray telescopes, each with a photoelectric X-ray polarimeter (EXP2, Efficient X-ray Photoelectric Polarimeter) in the focal plane. We present the design of the telescopes and the focal plane instrumentation and discuss the performance of this instrument to detect the degree and angle of linear polarization of some representative sources. Notwithstanding the limited resources, the proposed instrument can represent a breakthrough in X-ray Polarimetry.Comment: 10 pages, 7 figure
    corecore