6 research outputs found

    Inflammatory cytokines in leprosy reactions and periodontal diseases

    Get PDF
    The inflammatory cytokines involved in the immune response to chronic periodontal disease (CPD) in the context of leprosy reactions (LR) were analyzed in 57 new cases of multibacillary leprosy (MBL). They were stratified by the presence of CPD and LR. Messenger RNA (mRNA) expression of inflammatory mediators was determined by qRT-PCR using skin biopsy and by ELISA using serum samples, maintaining 5% of significance level in ANOVA and correlation analyses. Twenty-three (40.4%) patients presented the first LR, whereas 22 (45.0%) patients presented CPD. IL-4 and IL-6 serum levels were significantly lower in patients with CPD and LR than in patients without CPD but with LR; IFN-γ serum levels were higher in patients with CPD and LR than in patients with no CPD and no LR; IL-4 serum levels were negatively correlated with TNF-α gene expression, while IL-6 serum levels were positively correlated with IFN-γ gene expression, in the skin of subjects with CPD and LR. The presence of DPC in individuals with LR immunoregulated IL-6, IFN-γ, and IL-4 concentrations. The presence of DPC decreased serum levels of IL-6 and IL-4 in reactional individuals. CPD concomitant to LR resulted in increased IFN-γ serum levels

    Effect of the pretreatment with fish oil on myocardial infarction in rats.

    No full text
    Ratos foram tratados com salina, óleos de peixe (OP) ou soja (OS) por via intragástrica durante 20 dias antes da indução do IAM. A área de infarto e atividades da creatina quinase no plasma e da caspase 3 no ventrículo esquerdo (VE) foram menores no grupo OP comparado a salina ou OS. Os conteúdos de IL-1β, TNF-α, CINC 2α/β, IL-6 e VEGF-α no VE e de IL-1β, TNF-α, MIP-3, IL-6 e VEGF-α no fígado foram elevados pelo OS. O OP aumentou os conteúdos de ATP e lactato e diminuiu o de glicogênio no VE. A redução do fluxo coronariano no VE dos animais infartados foi abolida pelo OP. A expressão gênica de iNOS, eNOS, HIF-1α, GLUT-1, VEGF-α, p53 e Bax2 no VE aumentou pelo OP. A fração de ejeção, fração de encurtamento e velocidade de encurtamento das fibras cardíacas foram mais elevadas pelo OP. Portanto, o tratamento com OP induziu um estado de pré-condicionamento que conferiu proteção do miocárdio à injúria isquêmica.Rats were treated with saline, fish (FO) or soybean (SO) oils by gavage for 20 days before myocardial infarction (MI). Infarct size, activities of plasma CK and caspase 3 in the left ventricle (LV) were decreased by FO as compared with saline or SO. The contents of IL-1β, TNF-α, CINC 2α/β, IL-6, VEGF-α in the LV and of IL-1β, TNF-α, MIP-3, IL-6, VEGF-α in the liver were increased by SO. Contents of ATP and lactate in the LV were increased and of glycogen decreased by FO. FO prevented the decrease in the coronary blood flow in the LV of infarcted rats. The mRNA contents of iNOS, eNOS, HIF-1α, GLUT 1, VEGF-α, p53 and Bax2 in the VE were increased by FO. Ejection fraction, fractional shortening and velocity of circumferential fiber-shortening were also increased by FO. So, treatment with FO leads to a preconditioning state that protected the heart from MI injury

    Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle

    No full text
    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.Sao Paulo Research Foundation, FAPESP [2008/54693-9]Sao Paulo Research Foundation (FAPESP)CAPESCAPE

    Local Injections of Adipose-Derived Mesenchymal Stem Cells Modulate Inflammation and Increase Angiogenesis Ameliorating the Dystrophic Phenotype in Dystrophin-Deficient Skeletal Muscle

    No full text
    The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-alpha, IL-6 and oxidative stress measured by Amplex(A (R)) reagent were observed. The level of TGF-beta 1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.Sao Paulo Research Foundation-FAPESP [2008/54693-9]Sao Paulo Research Foundation (FAPESP)National Council for Scientific and Technological Development (CNPq) [573557/2008-0]National Council for Scientific and Technological Development (CNPq
    corecore