10 research outputs found

    An insight into the stages of ion leakage during red blood cell storage

    Get PDF
    Packed red blood cells (pRBCs), the most commonly transfused blood product, are exposed to environmental disruptions during storage in blood banks. In this study, temporal sequence of changes in the ion exchange in pRBCs was analyzed. Standard techniques commonly used in electrolyte measurements were implemented. The relationship between ion exchange and red blood cells (RBCs) morphology was assessed with use of atomic force microscopy with reference to morphological parameters. Variations observed in the Na+, K+, Cl−, H+, HCO3−, and lactate ions concentration show a complete picture of singly-charged ion changes in pRBCs during storage. Correlation between the rate of ion changes and blood group type, regarding the limitations of our research, suggested, that group 0 is the most sensitive to the time-dependent ionic changes. Additionally, the impact of irreversible changes in ion exchange on the RBCs membrane was observed in nanoscale. Results demonstrate that the level of ion leakage that leads to destructive alterations in biochemical and morphological properties of pRBCs depend on the storage timepoint

    Spectroscopic signature of red blood cells in a D-galactose-induced accelerated aging model

    Get PDF
    This work presents a semi-quantitative spectroscopic approach, including FTIR-ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach provided the description of the RBC alterations at the molecular level in a model of accelerated aging induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging. Similarly, as in natural aging, a decrease in LDL level in blood plasma and no changes in the fraction of glucose, creatinine, total cholesterol, HDL, iron, or triglycerides were observed during the course of accelerated aging. Contrary to natural aging, the D-gal model led to an increase in cholesterol esters and the fraction of total esterified lipids in RBC membranes, and evoked significant changes in the secondary structure of the membrane proteins. Moreover, a significant decrease in the phosphorous level of blood plasma was specific for the D-gal model. On the other hand, natural aging induced stronger changes in the secondary structures of the proteins of the RBCs' interior. This work proves that research on the aging mechanism, especially in circulation-related diseases, should employ the D-gal model with caution. Nonetheless, the D-gal model enables to imitate age-related rheological alterations in RBCs, although they are partially derived from different changes observed in the RBC membrane at the molecular level

    Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques

    Get PDF
    Application of modern and innovative spectroscopic and microscopic approaches to biomedical analysis opens new horizons and sheds new light on many unexplored scientific territories. In this review, we critically summarize up-to-date Raman-based methodologies for red blood cells (RBCs) analysis used in biology and medicine, and compare them with both classical, as well as other spectroscopic and microscopic approaches. The main emphasis is placed on the advantages, disadvantages and capabilities of each technique for detection of RBC deteriorations and RBC-related diseases. Although currently used classical techniques of medical analysts serve as a gold standard for clinicians in diagnosis of erythropathies, they provide insufficient insight into RBC alterations at the molecular level. In addition, there is a demand for non-destructive and label-free analytical techniques for rapid detection and diagnosis of erythropathies. Their recognition often requires multimodal methodology comprising application of methods including sophisticated spectroscopy-based techniques, where Raman-based approaches play an important role

    Zero- to Low-field Relaxometry of Chemical and Biological Fluids

    No full text
    NMR relaxometry is an analytical method that provides information about the molecular environment, including even NMR “silent” molecules (spin-0), by analyzing the properties of NMR signals versus the magnitude of the longitudinal field. Conventionally, this technique has been performed at fields much higher than Earth’s magnetic field, but in this work, we present NMR relaxometry at zero and ultra-low magnetic fields (ZULFs). Operation under ZULFs allows us to investigate many slow (bio)chemical processes, whose timescale (milliseconds-seconds) coincides with a timescale of spin evolution. ZULFs regime also limits the detrimental role of T2 dephasing, which, in heterogeneous samples, is induced by magnetic susceptibility and often leads to line broadening, hence low-resolution spectra. Finally, in contrast to their high-field NMR, ZULF NMR measurements can be performed with inexpensive, portable/small-size sensors (atomic magnetometers). Here, we use ZULF NMR relaxometry in the analysis of (bio)chemical compounds containing 1H 13C, 1H-15N, and 1H-31P spin pairs. We also detected high-quality ULF NMR spectra of human whole blood at 0.8 ÎŒT, despite a shortening of spin relaxation by blood proteomes (e.g., hemoglobin). Information on relaxation times of blood, a potential early biomarker of inflammation, can be obtained in less than a minute and without the need for a sophisticated apparatus

    Zero- to low-field relaxometry of chemical and biological fluids

    Get PDF
    Abstract Nuclear magnetic resonance (NMR) relaxometry is an analytical method that provides information about molecular environments, even for NMR “silent” molecules (spin-0), by analyzing the properties of NMR signals versus the magnitude of the longitudinal field. Conventionally, this technique is performed at fields much higher than Earth’s magnetic field, but our work focuses on NMR relaxometry at zero and ultra-low magnetic fields (ZULFs). Operating under such conditions allows us to investigate slow (bio)chemical processes occurring on a timescale from milliseconds to seconds, which coincide with spin evolution. ZULFs also minimize T 2 line broadening in heterogeneous samples resulting from magnetic susceptibility. Here, we use ZULF NMR relaxometry to analyze (bio)chemical compounds containing 1H-13C, 1H-15N, and 1H-31P spin pairs. We also detected high-quality ULF NMR spectra of human whole-blood at 0.8 ΌT, despite a shortening of spin relaxation by blood proteomes (e.g., hemoglobin). Information on proton relaxation times of blood, a potential early biomarker of inflammation, can be acquired in under a minute using inexpensive, portable/small-size NMR spectrometers based on atomic magnetometers

    An insight into the stages of ion leakage during red blood cell storage

    Get PDF
    Packed red blood cells (pRBCs), the most commonly transfused blood product, are exposed to environmental disruptions during storage in blood banks. In this study, temporal sequence of changes in the ion exchange in pRBCs. Standard techniques commonly used in electrolyte measurements were implemented. The relationship between ion exchange and red blood cells (RBCs) morphology was assessed with use of atomic force microscopy with reference to morphological parameters. Variations observed in the Na+, K+, Cl-, H+, HCO3−, and lactate ions concentration show a complete picture of singly-charged ion changes in pRBCs during storage. Correlation between the rate of ion changes and blood group type, regarding the limitations of our research, suggested, that group 0 is the most sensitive to the time-dependent ionic changes. Additionally, the impact of irreversible changes in ion exchange on the RBCs membrane was observed in nanoscale. Results demonstrate that the level of ion leakage that leads to destructive alterations in biochemical and morphological properties of pRBCs depend on the storage timepoint

    Spectroscopic signature of red blood cells in a D-galactose-induced accelerated aging model

    Get PDF
    This work presents a semi-quantitative spectroscopic approach, including FTIR–ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach pro-vided the description of the RBC alterations at the molecular level in a model of accelerated ag-ing induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging. Similarly, as in natural aging, a decrease in LDL level in blood plasma and no changes in the fraction of glucose, creatinine, total cholesterol, HDL, iron, or triglycerides were observed during the course of accelerated aging. Contrary to natural aging, the D-gal model led to an increase in cholesterol esters and the fraction of total esterified lipids in RBC membranes, and evoked significant changes in the secondary structure of the membrane proteins. Moreover, a significant decrease in the phosphorous level of blood plasma was specific for the D-gal model. On the other hand, natural aging induced stronger changes in the secondary structures of the proteins of the RBCs' interior. This work proves that research on the aging mechanism, especially in circulation-related diseases, should employ the D-gal model with caution. Nonetheless, the D-gal model enables to imitate age-related rheological alterations in RBCs, although they are partially derived from different changes observed in the RBC membrane at the molecular level

    Trends in biomedical analysis of red blood cells : Raman spectroscopy against other spectroscopic, microscopic and classical techniques

    No full text
    Application of modern and innovative spectroscopic and microscopic approaches to biomedical analysis opens new horizons and sheds new light on many unexplored scientific territories. In this review, we critically summarize up-to-date Raman-based methodologies for red blood cells (RBCs) analysis used in biology and medicine, and compare them with both classical, as well as other spectroscopic and microscopic approaches. The main emphasis is put on advantages, disadvantages and capabilities of each technique for detection of RBC deteriorations and RBC-related diseases. Although currently used classical techniques of medical analytsis serve as a gold standard for clinicians in diagnosis of erythropathies, they provide insufficient insight into RBC alterations at the molecular level. In addition, there is a demand for non-destructive and label-free analytical techniques for rapid detection and diagnosis of erythropathies. Their recognition often requires multimodal methodology comprising application of methods including sophisticated spectroscopy-based techniques, where Raman-based approaches play an important role
    corecore