7,700 research outputs found

    New conjecture for the SUq(N)SU_q(N) Perk-Schultz models

    Full text link
    We present a new conjecture for the SUq(N)SU_q(N) Perk-Schultz models. This conjecture extends a conjecture presented in our article (Alcaraz FC and Stroganov YuG (2002) J. Phys. A vol. 35 pg. 6767-6787, and also in cond-mat/0204074).Comment: 3 pages 0 figure

    Generalization of the matrix product ansatz for integrable chains

    Full text link
    We present a general formulation of the matrix product ansatz for exactly integrable chains on periodic lattices. This new formulation extends the matrix product ansatz present on our previous articles (F. C. Alcaraz and M. J. Lazo J. Phys. A: Math. Gen. 37 (2004) L1-L7 and J. Phys. A: Math. Gen. 37 (2004) 4149-4182.)Comment: 5 pages. to appear in J. Phys. A: Math. Ge

    Exactly solvable interacting vertex models

    Full text link
    We introduce and solvev a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest-neighbor interactions among the vertices, there exist extra hard-core interactions among pair of vertices at larger distances.The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product {\it ansatz}. Similarly as the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains already appeared in the literature. The present paper explains their integrability.Comment: 20 pages, 3 figure

    Exact Solution of the Asymmetric Exclusion Model with Particles of Arbitrary Size

    Full text link
    A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s=0,1,2,...s = 0,1,2,..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distribution of molecules's sizes may change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and the dynamical critical exponent zz is calculated from the finite-size corrections of the mass gap of the related quantum chain. Our results show that for an arbitrary distribution of molecules the dynamical critical behavior is on the Kardar-Parizi-Zhang (KPZ) universality.Comment: 28 pages, 2 figures. To appear in Phys. Rev. E (1999

    Critical Behaviour of Mixed Heisenberg Chains

    Full text link
    The critical behaviour of anisotropic Heisenberg models with two kinds of antiferromagnetically exchange-coupled centers are studied numerically by using finite-size calculations and conformal invariance. These models exhibit the interesting property of ferrimagnetism instead of antiferromagnetism. Most of our results are centered in the mixed Heisenberg chain where we have at even (odd) sites a spin-S (S') SU(2) operator interacting with a XXZ like interaction (anisotropy Δ\Delta). Our results indicate universal properties for all these chains. The whole phase, 1>Δ>−11>\Delta>-1, where the models change from ferromagnetic (Δ=1)( \Delta=1 ) to ferrimagnetic (Δ=−1)(\Delta=-1) behaviour is critical. Along this phase the critical fluctuations are ruled by a c=1 conformal field theory of Gaussian type. The conformal dimensions and critical exponents, along this phase, are calculated by studying these models with several boundary conditions.Comment: 21 pages, standard LaTex, to appear in J.Phys.A:Math.Ge

    The pair annihilation reaction D + D --> 0 in disordered media and conformal invariance

    Full text link
    The raise and peel model describes the stochastic model of a fluctuating interface separating a substrate covered with clusters of matter of different sizes, and a rarefied gas of tiles. The stationary state is obtained when adsorption compensates the desorption of tiles. This model is generalized to an interface with defects (D). The defects are either adjacent or separated by a cluster. If a tile hits the end of a cluster with a defect nearby, the defect hops at the other end of the cluster changing its shape. If a tile hits two adjacent defects, the defect annihilate and are replaced by a small cluster. There are no defects in the stationary state. This model can be seen as describing the reaction D + D -->0, in which the particles (defects) D hop at long distances changing the medium and annihilate. Between the hops the medium also changes (tiles hit clusters changing their shapes). Several properties of this model are presented and some exact results are obtained using the connection of our model with a conformal invariant quantum chain.Comment: 8 pages, 12figure

    Exact Solution of Asymmetric Diffusion With N Classes of Particles of Arbitrary Size and Hierarchical Order

    Full text link
    The exact solution of the asymmetric exclusion problem with N distinct classes of particles (c = 1,2,...,N), with hierarchical order is presented. In this model the particles (size 1) are located at lattice points, and diffuse with equal asymmetric rates, but particles in a class c do not distinguish those in the classes c' >c from holes (empty sites). We generalize and solve exactly this model by considering the molecules in each distinct class c =1,2,...,N with sizes s_c (s_c = 0,1,2,...), in units of lattice spacing. The solution is derived by a Bethe ansatz of nested type.Comment: 27 pages, 1 figur
    • …
    corecore