15 research outputs found
Unravelling the genetics of non-random fertilization associated with gametic incompatibility
In the dairy industry, mate allocation is dependent on the producer’s breeding goals and the parents’ breeding values. The probability of pregnancy differs among sire-dam combinations, and the compatibility of a pair may vary due to the combination of gametic haplotypes. Under the hypothesis that incomplete incompatibility would reduce the odds of fertilization, and complete incompatibility would lead to a non-fertilizing or lethal combination, deviation from Mendelian inheritance expectations would be observed for incompatible pairs. By adding an interaction to a transmission ratio distortion (TRD) model, which detects departure from the Mendelian expectations, genomic regions linked to gametic incompatibility can be identified. This study aimed to determine the genetic background of gametic incompatibility in Holstein cattle. A total of 283,817 genotyped Holstein trios were used in a TRD analysis, resulting in 422 significant regions, which contained 2075 positional genes further investigated for network, overrepresentation, and guilt-by-association analyses. The identified biological pathways were associated with immunology and cellular communication and a total of 16 functional candidate genes were identified. Further investigation of gametic incompatibility will provide opportunities to improve mate allocation for the dairy cattle industry
Substrates and routes of migration of early generated neurons in the developing rat thalamus
We investigated the substrates supporting neuronal migration, and its routes, during early thalamic development in the rat. Neurons and axonal and glial fibres were identified in embryos with single and double immunohistochemistry; dynamic data were obtained with cell tracers in short-term organotypic cultured slices. The earliest thalamic neurons, originating from the ventricular neuroepithelium between embryonic days 13 and 15, include those of the reticular thalamic nucleus. At this developmental stage, calretinin, calbindin or γ-aminobutyric acid immunostaining revealed both radially and nonradially orientated neurons in the region of reticular thalamic migration, between the dorsal and ventral thalamic primordia. In cultured slices, injections of fluorescent dyes in the neuroepithelium labelled neurons in a migratory stream along radial glia in the same zone. Some labelled fusiform cells departed from this radial trajectory along orthogonal routes within the dorsal thalamus. Confocal microscopy revealed nonradially orientated neurons in close apposition with a fibre system parallel to the lateral thalamic surface. These fibres expressed axonal markers, including the intermediate filament protein α-internexin and a polysialylated form of neuronal cell adhesion molecule. Active migration of nonradially orientated neurons along neuronal substrates was confirmed in living cultured slices. In addition, in vitro and ex vivo experiments revealed neurons migrating tangentially in association with glial fibres. These results provide novel evidence that: (i) early generated thalamic neurons follow nonradial routes in addition to glia-linked radial migration; and (ii), nonradially migrating thalamic neurons move along both glial and axonal substrates, which could represent a distinctive feature of thalamic development.This work was supported by grants of the Italian Ministry of Health to C.F. and by grants PB97-0582-CO2-01 and PGC2000-2756-E of the Spanish Ministry of Science and Technology to A.F.Peer reviewe
Capacidade de enraizamento de estacas de Maytenus muelleri Schwacke com a aplicação de ácido indol butírico relacionada aos aspectos anatômicos Rooting capacity of Maytenus muelleri Schwacke cuttings with indolebutyric acid application related to anatomical aspects
A espinheira-santa (Maytenus muelleri - Celastraceae) é a planta medicinal nativa do Sul do Brasil, cujas folhas são tradicionalmente utilizadas pela medicina popular para o tratamento de úlceras e outros problemas gástricos. Existem poucos trabalhos publicados sobre a produção de mudas e técnicas de propagação vegetativa da espécie. A propagação de espinheira-santa por estaquia poderia ser um método eficiente para obtenção de material homogêneo, com características genéticas desejáveis, produzido a partir de plantas matrizes selecionadas. O presente trabalho teve por objetivo estudar os efeitos da aplicação de ácido indol butírico (AIB), em solução e em pó, no enraizamento de estacas de espinheira-santa coletadas nas quatro estações do ano (abril/2005 a janeiro/2006), bem como averiguar, por meio de análises anatômicas e histoquímicas das estacas, a presença de possíveis impedimentos à iniciação do enraizamento adventício. Estacas provenientes de ramos de plantas matrizes de seis anos cultivadas da Estação Experimental do Canguiri, Pinhais, PR, foram coletadas e tratadas com AIB (0, 1500, 3000 mg L-1 ou mg kg-1), em solução alcoólica (50% v/v) e em talco. Aos 365 dias foram avaliadas as porcentagens de estacas enraizadas e mortas, número e comprimento médio de raízes formadas por estaca. Análises anatômicas e histoquímicas com lugol e cloreto férrico foram realizadas. A estação mais promissora para o enraizamento foi o verão/2006 com 62,50% para o tratamento controle, devido à menor lignficação dos ramos no período de intenso crescimento vegetativo. O número médio de raízes formadas por estaca foi de 6,94 (solução) e o comprimento médio de raízes formadas/estaca chegou a 4,82 cm nesta mesma estação. As concentrações de AIB aplicadas não foram eficientes na indução radicial, independentemente do modo de aplicação. Foi detectada a presença de uma camada quase contínua de fibras e braquiesclereídes, a qual constitui barreira anatômica à indução radicial. Os testes histoquímicos revelaram a presença de amido e de compostos fenólicos nas estacas, em todas as estações do ano. A dificuldade ou demora no enraizamento não pode ser justificada pela falta de reservas de amido nos tecidos das estacas, mas pode ser justificada pela presença de compostos fenólicos, possivelmente do grupo dos monofenóis, que causam a degradação do AIA, interferindo negativamente na indução do enraizamento.<br>"Espinheira-santa" (Maytenus muelleri - Celastraceae) is a medicinal plant native to Southern Brazil, the leaves of which are traditionally used in popular medicine for the treatment of stomach ulcers and other gastric problems. There are few published studies about seedling production and vegetative propagation techniques for this species. The propagation of "espinheira-santa" by cuttings could be an efficient method to obtain homogeneous material, with desirable genetic characteristics, produced from selected mother plants. This paper aimed to study the effects of indolebutyric acid (IBA) application, in solution and in powder, on the rooting of "espinheira-santa" cuttings, collected in four seasons (April/2005 to January/2006), as well as to investigate, by means of cutting anatomical and histochemical analyses, the presence of possible impediments to adventitious rooting initiation. Cuttings from branches of six-year mother plants grown at "Estação Experimental do Canguiri", Pinhais, Paraná State, Brazil, were collected and treated with IBA (0, 1500, 3000 mg L-1 or mg kg-1) in alcoholic solution (50% v/v) and in powder. After 365 days, the percentages of rooted and dead cuttings, the number and mean length of roots/cutting were evaluated. Anatomical and histochemical analyses were performed with lugol and ferric chloride. The most promising season for rooting was Summer/2006, with 62.50% of rooting for the control treatment, due to the lesser lignification degree of branches in intense vegetative growth period. The mean number of roots/cutting was 6.94 (solution) and the mean length of roots/cutting was 4.82 cm in that same season. The applied IBA concentrations were not efficient in inducing root growth, regardless of the application method. An almost continuous layer of fibers and stone cells was detected, constituting an anatomical barrier for rooting induction. The histochemical tests revealed the presence of starch and phenolic compounds in cuttings, in all seasons. The difficulty or delay in rooting cannot be justified by the absence of starch reserve in the cutting tissues but by the presence of phenolic compounds, possibly of the group of monophenols, which cause IAA degradation, negatively affecting rooting induction