111 research outputs found

    14

    No full text

    Effect of Dynamic Loading on the Transport of Solutes into Agarose Hydrogels

    Get PDF
    In functional tissue engineering, the application of dynamic loading has been shown to improve the mechanical properties of chondrocyte-seeded agarose hydrogels relative to unloaded free swelling controls. The goal of this study is to determine the effect of dynamic loading on the transport of nutrients in tissue-engineered constructs. To eliminate confounding effects, such as nutrient consumption in cell-laden disks, this study examines the response of solute transport due to loading using a model system of acellular agarose disks and dextran in phosphate-buffered saline (3 and 70 kDa). An examination of the passive diffusion response of dextran in agarose confirms the applicability of Fick's law of diffusion in describing the behavior of dextran. Under static loading, the application of compressive strain decreased the total interstitial volume available for the 70 kDa dextran, compared to free swelling. Dynamic loading significantly enhanced the rate of solute uptake into agarose disks, relative to static loading. Moreover, the steady-state concentration under dynamic loading was found to be significantly greater than under static loading, for larger-molecular-mass dextran (70 kDa). This experimental finding confirms recent theoretical predictions that mechanical pumping of a porous tissue may actively transport solutes into the disk against their concentration gradient. The results of this study support the hypothesis that the application of dynamic loading in the presence of growth factors of large molecular weight may result in both a mechanically and chemically stimulating environment for tissue growth

    Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances

    No full text
    The possibility that exposures to environmental agents are associated with reproductive disorders in human populations has generated much public interest recently. Phthalate esters are used most commonly as plasticizers in the food and construction industry, and di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate in the environment. Daily human exposure to DEHP in the U.S. is significant, and occupational and clinical exposures from DEHP-plasticized medical devices, e.g., blood bags, hemodialysis tubing, and nasogastric feeding tubes, increase body burden levels. We investigated the effects of chronic exposures to low environmentally relevant DEHP levels on testicular function. Our data show that prolonged exposures to this agent induced high levels of the gonadotropin luteinizing hormone and increased the serum concentrations of sex hormones [testosterone and 17β-estradiol (E2)] by >50%. Increased proliferative activity in Leydig cells was evidenced by enhanced expression of cell cycle proteins, as determined by RT-PCR. The numbers of Leydig cells in the testis of DEHP-treated rats were 40–60% higher than in control rats, indicating induction of Leydig cell hyperplasia. DEHP-induced elevations in serum testosterone and E2 levels suggest the possibility of multiple crosstalks between androgen, estrogen, and steroid hormone receptors, whereas the presence of estrogen receptors in nonreproductive tissues, e.g., cardiovascular system and bones, implies that the increases in serum E2 levels have implications beyond reproduction, including systemic physiology. Analysis of the effects of phthalate exposures on gonadotropin and steroid hormone levels should form part of overall risk assessment in human populations
    • …
    corecore