205 research outputs found

    Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.This study assessed whether exposure of male rats to two estrogenic, environmental chemicals, 4-octylphenol (OP) and butyl benzyl phthalate (BBP) during gestation or during the first 21 days of postnatal life, affected testicular size or spermatogenesis in adulthood (90-95 days of age). Chemicals were administered via the drinking water or concentrations of 10-1000 micrograms/l (OP) or 1000 micrograms/l (BBP), diethylstilbestrol (DES; 100 micrograms/l) and an octylphenol polyethoxylate (OPP; 1000 micrograms/l), which is a weak estrogen or nonestrogenic in vitro, were administered as presumptive positive and negative controls, respectively. Controls received the vehicle (ethanol) in tap water. In study 1, rats were treated from days 1-22 after births in studies 2 and 3, the mothers were treated for approximately 8-9 weeks, spanning a 2-week period before mating throughout gestation and 22 days after giving birth. With the exception of DES, treatment generally had no major adverse effect or body weight: in most instances, treated animals were heavier than controls at day 22 and at days 90-95. Exposure to OP, OPP, or BBP at a concentration of 1000 micrograms/1 resulted in a small (5-13%) but significant (p < 0.01 or p < 0.0001) reduction in mean testicular size in studies 2 and 3, an effect that was still evident when testicular weight was expressed relative to body, weight or kidney weight. The effect of OPP is attributed to its metabolism in vivo to OP. DES exposure caused similar reductions in testicular size but also caused reductions in body weight, kidney weight, and litter size. Ventral prostate weight was reduced significantly in DES-treated rats and to minor extent in OP-treated rats. Comparable but more minor effects of treatment with DES or OP on testicular size were observed in study 1. None of the treatments had any adverse effect on testicular morphology or on the cross-sectional area of the lumen or seminiferous epithelium at stages VII-VIII of the spermatogenic cycle, but DES, OP, and BBP caused reductions of 10-21% (p < 0.05 to p < 0.001) in daily sperm production. Humans are exposed to phthalates, such as BBP, and to alkylphenol polyethoxylates, such as OP, but to what extent is unknown. More detailed studies are warranted to assess the possible risk to the development of the human testis from exposure to these and other environmental estrogens

    Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage

    No full text
    Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts towards the regeneration of a broad range of tissues with native zonal complexity and functional performance

    Insulin, Ascorbate, and Glucose Have a Much Greater Influence Than Transferrin and Selenous Acid on the In Vitro Growth of Engineered Cartilage in Chondrogenic Media

    Get PDF
    The primary goal of this study was to characterize the response of chondrocyte-seeded agarose constructs to varying concentrations of several key nutrients in a chondrogenic medium, within the overall context of optimizing the key nutrients and the placement of nutrient channels for successful growth of cartilage tissue constructs large enough to be clinically relevant in the treatment of osteoarthritis (OA). To this end, chondrocyte-agarose constructs (phi4x2.34 mm, 30x106 cells/mL) were subjected to varying supplementation levels of insulin (0× to 30× relative to standard supplementation), transferrin (0x to 30x), selenous acid (0x to 10x), ascorbate (0x to 30x), and glucose (0x to 3x). The quality of resulting engineered tissue constructs was evaluated by their compressive modulus (E-Y), tensile modulus (E+Y), hydraulic permeability (k), and content of sulfated glycosaminoglycans (sGAG) and collagen (COL); DNA content was also quantified. Three control groups from two separate castings of constructs (1x concentrations of all medium constituents) were used. After 42 days of culture, values in each of these controls were, respectively, E-Y=518 plus or minus 78, 401 plus or minus 113, 236 plus or minus 67 kPa; E+Y=1420 plus or minus 430, 1140 plus or minus 490, 1240 plus or minus 280 kPa; k=2.3 plus or minus 0.8x10-3, 5.4 plus or minus 7.0x10-3, 3.3 plus or minus 1.3x10-3 mm4/N times s; sGAG=7.8 plus or minus 0.3, 6.3 plus or minus 0.4, 4.1 plus or minus 0.5%/ww; COL=1.3 plus or minus 0.2, 1.1 plus or minus 0.3, 1.4 plus or minus 0.4%/ww; and DNA=11.5 plus or minus 2.2, 12.1 plus or minus 0.6, 5.2 plus or minus 2.8 μg/disk. The presence of insulin and ascorbate was essential, but their concentrations may drop as low as 0.3x without detrimental effects on any of the measured properties; excessive supplementation of ascorbate (up to 30x) was detrimental to E-Y, and 30x insulin was detrimental to both E+Y and E-Y. The presence of glucose was similarly essential, and matrix elaboration was significantly dependent on its concentration (p less than 10-6), with loss of functional properties, composition, and cellularity observed at less than or equal to 0.3x; excessive glucose supplementation (up to 3x) showed no detrimental effects. In contrast, transferrin and selenous acid had no influence on matrix elaboration. These findings suggest that adequate distributions of insulin, ascorbate, and glucose, but not necessarily of transferrin and selenous acid, must be ensured within large engineered cartilage constructs to produce a viable substitute for joint tissue lost due to OA

    Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage.

    Get PDF
    Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance.M.S.B., J.-P.S.-P., and M.M.S. acknowledge the support of the Medical Research Council, the Engineering and Physical Sciences Research Council, and the Biotechnology and Biological Sciences Research Council UK Regenerative Medicine Platform Hubs “Acellular Approaches for Therapeutic Delivery” (MR/K026682/1) and “A Hub for Engineering and Exploiting the Stem Cell Niche” (MR/K026666/1). J.-P.S.-P. and M.M.S. were also supported by the Medical Engineering Solutions in the Osteoarthritis Centre of Excellence, funded by the Wellcome Trust and the Engineering and Physical Sciences Research Council (088844). J.-P.S.-P. would like to acknowledge the Value in People Award from the Wellcome Trust Institutional Strategic Support Fund (097816/Z/11/A). M.M.S. also acknowledges the support from the ERC Seventh Framework Programme Consolidator grant “Naturale CG” under Grant Agreement No. 616417

    Does Uptake of Pharmaceuticals Vary Across Earthworm Species?

    Get PDF
    This study compared the uptake and depuration of four commonly used pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in two earthworm species (Lumbricus terrestris and Eisenia fetida). L. terrestris are a larger species and often found in deep burrows whereas E. fetida prefer to reside near the soil surface. Species burrowing habits and sizes may alter uptake by earthworms. All four pharmaceuticals were taken up into both L. terrestris and E. fetida tissue after 21 days exposure to spiked soil. Bioconcentration factors (BCFs) ranged between 1.72 and 29.83 for L. terrestris and 1.14 and 63.03 for E. fetida. For carbamazepine and diclofenac, BCFs were similar whereas for fluoxetine and orlistat, BCFs in E. fetida were more than double those seen in L. terrestris. Results indicate that uptake into earthworms cannot be generalised between species and that the influence of species traits can vary depending on the nature of the study chemical

    Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.Funding was provided by Science Foundation Ireland (President of Ireland Young Researcher Award: 08/Y15/B1336) and the European Research Council (StemRepair – Project number 258463)
    corecore