2,217 research outputs found
Lifting a Realistic SO(10) Grand Unified Model to Five Dimensions
It has been shown recently that the problem of rapid proton decay induced by
dimension five operators arising from the exchange of colored Higgsinos can be
simply avoided in grand unified models where a fifth spatial dimension is
compactified on an orbifold. Here we demonstrate that this idea can be used to
solve the Higgsino-mediated proton decay problem in any realistic SO(10) model
by lifting that model to five dimensions. A particular SO(10) model that has
been proposed to explain the pattern of quark and lepton masses and mixings is
used as an example. The idea is to break the SO(10) down to the Pati-Salam
symmetry by the orbifold boundary conditions. The entire four-dimensional
SO(10) model is placed on the physical SO(10) brane except for the gauge
fields, the 45 and a single 10 of Higgs fields, which are placed in the
five-dimensional bulk. The structure of the Higgs superpotential can be
somewhat simplified in doing so, while the Yukawa superpotential and mass
matrices derived from it remain essentially unaltered.Comment: 17 pages, version to be published in Phys. Rev. D with expanded
discussion of the suppression of dim-5 proton decay operator
Explicit SO(10) Supersymmetric Grand Unified Model for the Higgs and Yukawa Sectors
A complete set of fermion and Higgs superfields is introduced with
well-defined SO(10) properties and U(1) x Z_2 x Z_2 family charges from which
the Higgs and Yukawa superpotentials are constructed. The structures derived
for the four Dirac fermion and right-handed Majorana neutrino mass matrices
coincide with those previously obtained from an effective operator approach.
Ten mass matrix input parameters accurately yield the twenty masses and mixings
of the quarks and leptons with the bimaximal atmospheric and solar neutrino
vacuum solutions favored in this simplest version.Comment: Published version appearing in PRL in which small modifications to
original submission and a paragraph concerning proton decay appea
Recommended from our members
Modeling Eddy Correlation Biases Created by Velocity Sensitivities of Clark-type Oxygen Microelectrodes Under Waves
Field deployments, flume experiments, and a 2D wave model have been used to identify the characteristics of Clark-type oxygen microelectrodes and measurement parameters that could possibly bias eddy correlation (EC) flux measurements made under waves. Eddy correlation is a technique adapted from atmospheric sciences that couples concurrent and co-located velocity and oxygen measurements in order to calculate how much oxygen is being taken up by the sediment in aquatic environments. Field deployments made with two co-located microelectrodes suggest that individual sensor sensitivities to changes in the velocity field under wave conditions are biasing the EC calculation. Experiments performed in two different flumes illustrate the non-linear response of microelectrodes to changes in velocity and the individual nature of each microelectrode’s performance based on the shape and placement of the sensing cathode. Long, thin cathodes that are offset slightly from the membrane seem to have the necessary response time for EC measurements and also minimize the velocity effect.
Furthermore, a 2D wave model was used to test the sensitivity of the EC flux determination to various parameters specific to the wave conditions and to the microelectrode response. The model demonstrates that most parameters do not directly affect the flux, as long as both the velocity and oxygen time series are in phase temporally with the exception of a non-zero mean vertical velocity. The mean horizontal velocity can also greatly affect the flux if there is a delay in the microelectrode response or a spatial separation between the sampling volumes for the ADV and microelectrodes that results in a time lag between the velocity and oxygen time series. The results from the model suggest that correctly aligning the oxygen and velocity time series is extremely important and that non-zero mean vertical velocities may be biasing the flux calculation in some instances
Realization of the Large Mixing Angle Solar Neutrino Solution in an SO(10) Supersymmetric Grand Unified Model
An SO(10) supersymmetric grand unified model proposed earlier leading to the
solar solution involving ``just-so'' vacuum oscillations is reexamined to study
its ability to obtain the other possible solar solutions. It is found that all
four viable solar neutrino oscillation solutions can be achieved in the model
simply by modification of the right-handed Majorana neutrino mass matrix, M_R.
Whereas the small mixing and vacuum solutions are easily obtained with several
texture zeros in M_R, the currently-favored large mixing angle solution
requires a nearly geometric hierarchical form for M_R that leads by the seesaw
formula to a light neutrino mass matrix which has two or three texture zeros.
The form of the matrix which provides the ``fine-tuning'' necessary to achieve
the large mixing angle solution can be understood in terms of Froggatt-Nielsen
diagrams for the Dirac and right-handed Majorana neutrino mass matrices. The
solution fulfils several leptogenesis requirements which in turn can be
responsible for the baryon asymmetry in the universe.Comment: 14 pages including 2 figure
Lepton Flavour Violation in a Class of Lopsided SO(10) Models
A class of predictive SO(10) grand unified theories with highly asymmetric
mass matrices, known as lopsided textures, has been developed to accommodate
the observed mixing in the neutrino sector. The model class effectively
determines the rate for charged lepton flavour violation, and in particular the
branching ratio for , assuming that the supersymmetric GUT
breaks directly to the constrained minimal supersymmetric standard model
(CMSSM). We find that in light of the combined constraints on the CMSSM
parameters from direct searches and from the WMAP satellite observations, the
resulting predicted rate for in this model class can be
within the current experimental bounds for low , but that the next
generation of experiments would effectively rule out this
model class if LFV is not detected.Comment: 23 page
Symmetric Textures in SO(10) and LMA Solution for Solar Neutrinos
We analyze a model based on SUSY SO(10) combined with SU(2) family symmetry
and symmetric mass matrices constructed by the authors recently. Previously,
only the parameter space for the LOW and vacuum oscillation (VO) solutions was
investigated. We indicate in this note the parameter space which leads to large
mixing angle (LMA) solution to the solar neutrino problem with a slightly
modified effective neutrino mass matrix. The symmetric mass textures arising
from the left-right symmetry breaking and the SU(2) symmetry breaking give rise
to very good predictions for the quark and lepton masses and mixing angles. The
prediction of our model for the |U_{e\nu_{3}}| element in the
Maki-Nakagawa-Sakata (MNS) matrix is close to the sensitivity of current
experiments; thus the validity of our model can be tested in the near future.
We also investigate the correlation between the |U_{e\nu_{3}}| element and
\tan^{2}\theta_{\odot} in a general two-zero neutrino mass texture.Comment: RevTeX4; 9 pages; 1 figur
Constraints on the rare tau decays from mu --> e gamma in the supersymmetric see-saw model
It is now a firmly established fact that all family lepton numbers are
violated in Nature. In this paper we discuss the implications of this
observation for future searches for rare tau decays in the supersymmetric
see-saw model. Using the two loop renormalization group evolution of the soft
terms and the Yukawa couplings we show that there exists a lower bound on the
rate of the rare process mu --> e gamma of the form BR(mu --> e gamma) > C
BR(tau --> mu gamma) BR(tau --> e gamma), where C is a constant that depends on
supersymmetric parameters. Our only assumption is the absence of cancellations
among the high-energy see-saw parameters. We also discuss the implications of
this bound for future searches for rare tau decays. In particular, for large
regions of the mSUGRA parameter space, we show that present B-factories could
discover either tau --> mu gamma or tau --> e gamma, but not both.Comment: 39 pages, 7 figures. Typos corrected, references adde
Texture of fermion mass matrices in partially unified theories
We investigate the texture of fermion mass matrices in theories with partial
unification (for example ) at a scale
GeV. Starting with the low energy values of the masses and the
mixing angles, we find only two viable textures with atmost four texture zeros.
One of these corresponds to a somewhat modified Fritzsch textures. A
theoretical derivataion of these textures leads to new interesting relations
among the masses and the mixing angles.Comment: 10 pages(Latex
Unique Mass Texture for Quarks and Leptons
Texture specific quark mass matrices which are hermitian and hierarchical are
examined in detail . In the case of texture 6 zeros matrices, out of sixteen
possibilities examined by us, none is able to fit the low energy data (LED),
for example, , ,
, lies in the range (PDG). Similarly none of the 32 texture 5 zeros mass matrices considered
is able to reproduce LED. In particular, the latest data from LEP regarding
rules out all of them. In the texture 4
zeros case, we find that there is a unique texture structure for and
mass matrices which is able to fit the data.Comment: 12 pages, LaTeX,some changes in the references,minor changes in the
text,to appear in Phys Rev D(Rapid communications
- …