116 research outputs found

    Maternal dietary choline availability alters the balance of netrin-1 and DCC neuronal migration proteins in fetal mouse brain hippocampus

    Get PDF
    Alterations in maternal dietary choline availability during days 12–17 of pregnancy led to an increase in the level of immunoreactive netrin-1 and a decrease in the level of DCC protein in the developing fetal mouse brain hippocampus compared with controls. Changes in the expression of cell migration cues during development could account for some of the lifelong consequences of maternal dietary choline availability for cognitive and memory processes

    Regulation of Choline Deficiency Apoptosis by Epidermal Growth Factor in CWSV-1 Rat Hepatocytes

    Get PDF
    Previous studies show that acute choline deficiency (CD) triggers apoptosis in cultured rat hepatocytes (CWSV-1 cells). We demonstrate that prolonged EGF stimulation (10 ng/mL x 48 hrs) restores cell proliferation, as assessed by BrdU labeling, and protects cells from CD-induced apoptosis, as assessed by TUNEL labeling and cleavage of poly(ADP-ribose) polymerase. However, EGF rescue was not accompanied by restoration of depleted intracellular concentrations of choline, glycerphosphocholine, phosphocholine, or phosphatidylcholine. In contrast, we show that EGF stimulation blocks apoptosis by restoring mitochondrial membrane potential (ΔΨm), as determined using the potential-sensitive dye chloromethyl-X-rosamine, and by preventing the release and nuclear localization of cytochrome c. We investigated whether EGF rescue involves EGF receptor phosphorylation and activation of the down-stream cell survival factor Akt. Compared to cells in control medium (CT, 70 μmol choline x 48hrs), cells in CD medium (5 μmol choline) were less sensitive to EGF-induced (0–300 ng/mL x 5 min) receptor tyrosine phosphorylation. Compared to cells in CT medium, cells in CD medium treated with EGF (10 ng/mL x 5 min) exhibited higher levels of phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of AktSer473. Inactivation of PI3K was sufficient to block EGF-stimulated activation of Akt, restoration of mitochondrial ΔΨm, and prevention of cytochrome c release. These studies indicate that stimulation with EGF activates a cell survival response against CD-apoptosis by restoring mitochondrial membrane potential and preventing cytochrome c release and nuclear translocation which are mediated by activation of Akt in hepatocytes

    Increased oxidative stress is associated with balanced increases in hepatocyte apoptosis and proliferation in glycerol-3-phosphate acyltransferase-1 deficient mice

    Get PDF
    The absence of mouse mitochondrial glycerol-3-phosphate acyltransferase-1 (Gpat1-/-) increases the amount of arachidonate in liver phospholipids and increases β-hydroxybutyrate and acyl-carnitines, suggesting an elevated rate of liver fatty acid oxidation. We asked whether these alterations might increase reactive oxygen species (ROS), apoptosis, or hepatocyte proliferation. Compared to wildtype controls, liver mitochondria from Gpat1-/- mice showed a 20% increase in the rate of ROS production and a markedly increased sensitivity to the induction of the mitochondrial permeability transition. Mitochondrial phosphatidylethanolamine and phosphatidylcholine from Gpat1-/- liver contained 21% and 67% more arachidonate, respectively, than wildtype controls, and higher amounts of 4-hydroxynonenal, a product of arachidonate peroxidation. Oxidative stress was associated with an increase in apoptosis, and with 3-fold and 15-fold higher TUNEL positive cells in liver from young and old Gpat1-/- mice, respectively, compared to age-matched controls. Compared to controls, bromodeoxyuridine labeling was 50% and 7-fold higher in livers from young and old Gpat1-/- mice, respectively, but fewer glutathione-S-transferase positive cells were present. Thus, Gpat1-/- liver exhibits increased oxidative stress and sensitivity of the mitochondrial permeability transition pore, and a balanced increase in apoptosis and proliferation

    Choline Availability During Embryonic Development Alters Progenitor Cell Mitosis in Developing Mouse Hippocampus

    Get PDF
    Previously, we reported that dietary choline influences development of the hippocampus in fetal rat brain. It is important to know whether similar effects of choline occur in developing fetal mouse brain because interesting new experimental approaches are now available using several transgenic mouse models. Timed-pregnant mice were fed choline-supplemented (CS), control (CT) or choline-deficient (CD) AIN-76 diet from embryonic day 12 to 17 (E12–17). Fetuses from CD dams had diminished concentrations of phosphocholine and phosphatidylcholine in their brains compared with CT or CS fetuses (P < 0.05). When we analyzed fetal hippocampus on day E17 for cells with mitotic phase–specific expression of phosphorylated histone H3, we detected fewer labeled cells at the ventricular surface of the ventricular zone in the CD group (14.8 ± 1.9) compared with the CT (30.7 ± 1.9) or CS (36.6 ± 2.6) group (P < 0.05). At the same time, we detected more apoptotic cells in E17 hippocampus using morphology in the CD group (11.8 ± 1.4) than in CT (5.6 ± 0.6) or CS (4.2 ± 0.7) group (P < 0.05). This was confirmed using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin anti-digoxigenin fluorescein conjugate antibody nick end-labeling (TUNEL) and activated caspase-3 immunoreactivity. We conclude that the dietary availability of choline to the mouse dam influences progenitor cell proliferation and apoptosis in the fetal brain. J. Nutr. 133: 3614–3618, 2003

    Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Case-Control Sequencing Studies

    Get PDF
    Rare variants (RVs) have been shown to be significant contributors to complex disease risk. By definition, these variants have very low minor allele frequencies and traditional single-marker methods for statistical analysis are underpowered for typical sequencing study sample sizes. Multimarker burden-type approaches attempt to identify aggregation of RVs across case-control status by analyzing relatively small partitions of the genome, such as genes. However, it is generally the case that the aggregative measure would be a mixture of causal and neutral variants, and these omnibus tests do not directly provide any indication of which RVs may be driving a given association. Recently, Bayesian variable selection approaches have been proposed to identify RV associations from a large set of RVs under consideration. Although these approaches have been shown to be powerful at detecting associations at the RV level, there are often computational limitations on the total quantity of RVs under consideration and compromises are necessary for large-scale application. Here, we propose a computationally efficient alternative formulation of this method using a probit regression approach specifically capable of simultaneously analyzing hundreds to thousands of RVs. We evaluate our approach to detect causal variation on simulated data and examine sensitivity and specificity in instances of high RV dimensionality as well as apply it to pathway-level RV analysis results from a prostate cancer (PC) risk case-control sequencing study. Finally, we discuss potential extensions and future directions of this work

    REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants

    Get PDF
    Supplemental Data Supplemental Data include one figure and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2016.08.016. Supplemental Data Document S1. Figure S1 and Tables S1–S5 Download Document S2. Article plus Supplemental Data Download Web Resources ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/ dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/ REVEL, https://sites.google.com/site/revelgenomics/ SwissVar, http://swissvar.expasy.org/ The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10−12) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046–0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027–0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale

    Neuropathology of wild-type and nef-attenuated T cell tropic simian immunodeficiency virus (SIVmac32H) and macrophage tropic neurovirulent SIVmac17E-Fr in cynomolgus macaques

    Get PDF
    The neuropathology of simian immunodeficiency (SIV) infection in cynomolgus macaques (Macaca fascicularis) was investigated following infection with either T cell tropic SIVmacJ5, SIVmacC8 or macrophage tropic SIVmac17E-Fr. Formalin fixed, paraffin embedded brain tissue sections were analysed using a combination of in situ techniques. Macaques infected with either wild-type SIVmacJ5 or neurovirulent SIVmac17E-Fr showed evidence of neuronal dephosphorylation, loss of oligodendrocyte and CCR5 staining, lack of microglial MHC II expression, infiltration by CD4+ and CD8+ T cells and mild astrocytosis. SIVmacJ5-infected animals exhibited activation of microglia whilst those infected with SIVmac17E-Fr demonstrated a loss of microglia staining. These results are suggestive of impaired central nervous system (CNS) physiology. Furthermore, infiltration by T cells into the brain parenchyma indicated disruption of the blood brain barrier (BBB). Animals infected with the Δnef-attenuated SIVmacC8 showed microglial activation and astrogliosis indicative of an inflammatory response, lack of MHC II and CCR5 staining and infiltration by CD8+ T cells. These results demonstrate that the SIV infection of cynomolgus macaque can be used as a model to replicate the range of CNS pathologies observed following HIV infection of humans and to investigate the pathogenesis of HIV associated neuropathology

    Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21

    Get PDF
    Previous genome-wide association studies (GWAS) of prostate cancer risk focused on cases unselected for family history and have reported over 100 significant associations. The International Consortium for Prostate Cancer Genetics (ICPCG) has now performed a GWAS of 2511 (unrelated) familial prostate cancer cases and 1382 unaffected controls from 12 member sites. All samples were genotyped on the Illumina 5M+exome single nucleotide polymorphism (SNP) platform. The GWAS identified a significant evidence for association for SNPs in six regions previously associated with prostate cancer in population-based cohorts, including 3q26.2, 6q25.3, 8q24.21, 10q11.23, 11q13.3, and 17q12. Of note, SNP rs138042437 (p = 1.7e−8) at 8q24.21 achieved a large estimated effect size in this cohort (odds ratio = 13.3). 116 previously sampled affected relatives of 62 risk-allele carriers from the GWAS cohort were genotyped for this SNP, identifying 78 additional affected carriers in 62 pedigrees. A test for an excess number of affected carriers among relatives exhibited strong evidence for co-segregation of the variant with disease (p = 8.5e−11). The majority (92 %) of risk-allele carriers at rs138042437 had a consistent estimated haplotype spanning approximately 100 kb of 8q24.21 that contained the minor alleles of three rare SNPs (dosage minor allele frequencies <1.7 %), rs183373024 (PRNCR1), previously associated SNP rs188140481, and rs138042437 (CASC19). Strong evidence for co-segregation of a SNP on the haplotype further characterizes the haplotype as a prostate cancer pre-disposition locus

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities
    • …
    corecore