89 research outputs found

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    Management-Reform der Vereinten Nationen

    Get PDF

    A new class of trigonometric B-Spline Curves

    Get PDF
    We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has optimal shape-preserving properties and good symmetric properties

    VGLUT1 binding to endophilin or intersectin1 and dynamin phosphorylation in a diurnal context

    Get PDF
    Glutamate is concentrated into synaptic vesicles (SV) by the vesicular glutamate transporters (VGLUT) 1 and 2. VGLUTs also harbor a Na+/Pi-transport activity when residing at the plasma membrane. Here we aimed to identify whether the diurnal switches of VGLUT1 parallels interactions with or modification of endocytic proteins.VGLUT1 and dynamin bind to SH3 domains of either endophilin (Enph) or intersectin 1 (ITSN1) harboring one or five SH3 domains A–E, respectively. We followed diurnal variations by pull down experiments using SH3 fusion protein and brains from mice entrained in a strict 24-h light–dark cycle (12-h light Zeitgeber (ZT) 0, 6; 12-h dark ZT 12 and 18). In pull downs with EnphSH3 interaction with VGLUT1 is high during the resting light and reduced during the active dark period while dynamin binding does not vary. This diurnal light/dark pattern depends on a functional period 2 gene and changes when animals are kept in complete darkness. Pull downs using ITSN1SH3 A reveal diurnally varying binding of VGLUT1 with slightly reduced VGLUT1/dynamin ratios at the beginning of the light (ZT 0) or the dark (ZT 12) period. Phosphorylation increases binding of VGLUT1 but not of dynamin to EnphSH3. In contrast binding of dynamin to ITSN1SH3 A decreases under phosphorylating conditions with no changes in VGLUT1 binding. Phosphorylation of dynamin at Ser 774 is high at ZT 6 and ZT 18 when more VGLUT1 is at the plasma membrane but low at ZT 0 and ZT 12 the diurnal peaks of VGLUT1 endocytosis. In conclusion the diurnally varying endocytosis of VGLUT1 involves differential interactions with the SH3 domains of Enph and ITSN1 and correlates with the de-phosphorylation of dynamin1

    Decreased HIV diversity after allogeneic stem cell transplantation of an HIV-1 infected patient: a case report

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) coreceptor use and viral evolution were analyzed in blood samples from an HIV-1 infected patient undergoing allogeneic stem cell transplantation (SCT). Coreceptor use was predicted in silico from sequence data obtained from the third variable loop region of the viral envelope gene with two software tools. Viral diversity and evolution was evaluated on the same samples by Bayesian inference and maximum likelihood methods. In addition, phenotypic analysis was done by comparison of viral growth in peripheral blood mononuclear cells and in a CCR5 (R5)-deficient T-cell line which was controlled by a reporter assay confirming viral tropism. In silico coreceptor predictions did not match experimental determinations that showed a consistent R5 tropism. Anti-HIV directed antibodies could be detected before and after the SCT. These preexisting antibodies did not prevent viral rebound after the interruption of antiretroviral therapy during the SCT. Eventually, transplantation and readministration of anti-retroviral drugs lead to sustained increase in CD4 counts and decreased viral load to undetectable levels. Unexpectedly, viral diversity decreased after successful SCT. Our data evidence that only R5-tropic virus was found in the patient before and after transplantation. Therefore, blocking CCR5 receptor during stem cell transplantation might have had beneficial effects and this might apply to more patients undergoing allogeneic stem cell transplantation. Furthermore, we revealed a scenario of HIV-1 dynamic different from the commonly described ones. Analysis of viral evolution shows the decrease of viral diversity even during episodes with bursts in viral load

    Synaptophysin is involved in resetting of the mammalian circadian clock

    Get PDF
    Background: Mammals can adapt to changing light/dark conditions by advancing or delaying their circadian clock phase. Light pulses evoke changes in gene expression and neuronal activity in the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system. Alterations in neuronal activity are partially mediated by changes in synaptic vesicle (SV) fusion at the presynaptic membrane, which modulates release of neurotransmitters. Methods: Male synaptophysin (Syp) knock-out and littermate control wild type mice were tested in an Aschoff type I resetting paradigm. Additionally, gene expression of 'cFos, Per1' and 'Per2' was assessed in the SCN. Finally, complexes between the synaptic vesicle proteins Syp and synaptobrevin (Syb) were studied in order to correlate behavior with protein complexes at synaptic vesicles. Results: Here we show that mice lacking Syp, a modulator of neurotransmitter release, are defective in delaying clock phase. In contrast, clock phase advances as well as clock period are normal in 'Syp-/-' knock-out mice. This correlates with the formation of Syp/Syb complexes. Conclusions: Our findings suggest that Syp is involved specifically in the response to a nocturnal light pulse occurring in the early night. It appears that the SV component Syp is critically involved in the delay portion of the resetting mechanism of the circadian clock

    Long-Term Relapse-Free Survival by Interdisciplinary Collaboration in a Patient with Metastatic Pancreatic Cancer (UICC IV)

    Get PDF
    Introduction: The prognostic outlook for patients suffering from pancreatic cancer is generally poor. Particularly in cases of advanced and metastatic disease, long-term relapse-free survival may be achieved only in a few cases. Case Report: A 45-year-old patient presented with metastatic pancreatic cancer. Liver metastases had been intra-operatively confirmed by histology. Prior to initiating treatment, a portacath was surgically implanted. Subsequently, the patient received a weekly dose of 1,000 mg/m2 gemcitabine combined with 2,000 mg/m2 high-dose 5-fluorouracil as a 24-hour infusion for palliative treatment. As the patient was suffering from a stenosis of the ductus hepaticus communis, an endoprosthesis was primarily implanted. After 18 applications of chemotherapy during which only low toxic side effects such as nausea, vomiting and alopecia (NCI-CTC grade 1) presented, a partial remission of the primary tumor was observed. In the course of chemotherapy treatment, the carbohydrate antigen 19-9 tumor marker value normalized. Thus, the interdisciplinary tumor board of the University of Erlangen decided to perform a laparoscopy to evaluate the status of liver metastases after palliative chemotherapy treatment. Subsequently, the primary tumor could be completely resected (pT2, pN0, pM0, L0, V0, G2, R0); liver metastases were not observed. Eight years after the initial diagnosis, the patient is relapse-free, professionally fully integrated and presents with an excellent performance status. Conclusion: Patients suffering from metastatic pancreatic cancer may benefit from treatment combinations with palliative intent. In singular cases, patients may even have a curative treatment option, provided a close interdisciplinary collaboration exists

    A Neuronal Network-Based Score Predicting Survival in Patients Undergoing Aortic Valve Intervention: The ABC-AS Score.

    Get PDF
    Background: Despite being the most commonly performed valvular intervention, risk prediction for aortic valve replacement in patients with severe aortic stenosis by currently used risk scores remains challenging. The study aim was to develop a biomarker-based risk score by means of a neuronal network. Methods: In this multicenter study, 3595 patients were divided into test and validation cohorts (70% to 30%) by random allocation. Input variables to develop the ABC-AS score were age, the cardiac biomarker high-sensitivity troponin T, and a patient history of cardiac decompensation. The validation cohort was used to verify the scores' value and for comparison with the Society of Thoracic Surgery Predictive Risk of Operative Mortality score. Results: Receiver operating curves demonstrated an improvement in prediction by using the ABC-AS score compared to the Society of Thoracic Surgery Predictive Risk of Operative Mortality (STS prom) score. Although the difference in predicting cardiovascular mortality was most notable at 30-day follow-up (area under the curve of 0.922 versus 0.678), ABC-AS also performed better in overall follow-up (0.839 versus 0.699). Furthermore, univariate analysis of ABC-AS tertiles yielded highly significant differences for all-cause (p < 0.0001) and cardiovascular mortality (p < 0.0001). Head-to-head comparison between both risk scores in a multivariable cox regression model underlined the potential of the ABC-AS score (HR per z-unit 2.633 (95% CI 2.156-3.216), p < 0.0001), while the STS prom score failed to reach statistical significance (p = 0.226). Conclusions: The newly developed ABC-AS score is an improved risk stratification tool to predict cardiovascular outcomes for patients undergoing aortic valve intervention

    Construction of C 2 Pythagorean-hodograph interpolating splines by the homotopy method

    Full text link
    The complex representation of polynomial Pythagorean-hodograph (PH) curves allows the problem of constructing a C 2 PH quintic “spline” that interpolates a given sequence of points p 0 , p 1 ,..., p N and end-derivatives d 0 and d N to be reduced to solving a “tridiagonal” system of N quadratic equations in N complex unknowns. The system can also be easily modified to incorporate PH-spline end conditions that bypass the need to specify end-derivatives. Homotopy methods have been employed to compute all solutions of this system, and hence to construct a total of 2 N +1 distinct interpolants for each of several different data sets. We observe empirically that all but one of these interpolants exhibits undesirable “looping” behavior (which may be quantified in terms of the elastic bending energy , i.e., the integral of the square of the curvature with respect to arc length). The remaining “good” interpolant, however, is invariably a fairer curve-having a smaller energy and a more even curvature distribution over its extent-than the corresponding “ordinary” C 2 cubic spline. Moreover, the PH spline has the advantage that its offsets are rational curves and its arc length is a polynomial function of the curve parameter.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41719/1/10444_2005_Article_BF02124754.pd
    corecore