148 research outputs found

    Postmenopausal bone loss : prevention and replacement

    Get PDF
    Osteoporosis is a skeletal disorder predominantly affecting postmenopausal women. Combination therapy of Carbocalcitonin (Elcatonin) and oral conjugated oestrogens (Premarin) not only prevents postmenopausal bone loss but leads to an increase in bone mass in normal early postmenopausal women. The aims of the study was to investigate the effect of combination therapy. A combination of Elcatonin (Carbo calcitonin) and Premarin was compared to Premarin alone, and to Elcatonin (Carbocalcitonin) alone and all groups were then compared to a control group.peer-reviewe

    Coeducation:A Contested Practice in Nineteenth- and Twentieth-Century Secondary Schooling

    Get PDF
    This chapter discusses the history of coeducation in secondary schooling, mainly in Europe and North America. The analysis focuses on the gendered characteristics of educational systems and curricula, as well as on national discourses about single-sex or mixed schooling. The focus is on the latter half of the nineteenth and the first decades of the twentieth century, when the merits and perils of coeducation were debated for this stage of schooling. Until after World War II, children of the working class hardly ever attended school past the age of 13 or 14. Therefore, this is a history of middle- and upper-class education. In the early nineteenth century, girls had to do with a very limited, private education that prepared only for homemaking and motherhood, while boys could attend public grammar schools that opened the door to the university and the professions. From the mid-nineteenth century, initiatives to improve the quality of girls’ education were taken. Few countries opened up boys’ public schools for girls; in most cases, new girls’ schools were established with more serious but still unequal curricula, focusing mainly on humanities. Schools teaching a curriculum equivalent to that of the boys’ schools were not created until after the turn of the century, when a more critical view of coeducation became the rule. Democratization and coeducation came hand in hand with the introduction of comprehensive mixed secondary schooling in the 1960s and 1970s. The shortcomings of coeducation, however, were not rediscovered until after it had generally been introduced

    Thermochemical scanning probe lithography of protein gradients at the nanoscale

    Get PDF
    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro

    Phase Nanoengineering via Thermal Scanning Probe Lithography and Direct Laser Writing

    Get PDF
    Nanomaterials derive their electronic, magnetic, and optical properties from their specific nanostructure. In most cases, nanostructured materials and their properties are defined during the materials growth, and nanofabrication techniques, such as lithography, are employed subsequently for device fabrication. Herein, a perspective is presented on a different approach for creating nanomaterials and devices where, after growth, advanced nanofabrication techniques are used to directly nanostructure condensed matter systems, by inducing highly controlled, localized, and stable changes in the electronic, magnetic, or optical properties. Then, advantages, limitations, applications in materials science and technology are highlighted, and future perspectives are discussed

    Towards an on-chip platform for the controlled application of forces via magnetic particles: A novel device for mechanobiology

    Get PDF
    In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field

    Highly Sensitive Magnetic Array-based Platform for Neuronal Signal Recording

    Get PDF
    This work presents a platform for the detection of the neuronal magnetic signal arising from the propagation of the action potential along the axon, via an array of highly sensitive magnetoresistive sensors and a low noise front-end electronic setup. We report the results of calculations and experiments for estimating the limit of detection of such platform in terms of minimum detectable magnetic field. Furthermore, an experimental setup for recording the magnetic signal in a brain slice is presented. (C) 2017 The Authors. Published by Elsevier Ltd

    Electrode-dependent asymmetric conduction mechanisms in K0.5Na0.5NbO3 micro-capacitors

    Get PDF
    The ultimate performance of devices employing lead-free piezoelectrics is determined not only by the intrinsic properties of the piezo, but also by processes and materials employed to create the electric contacts. In this paper, we investigate the impact of different metallic electrodes with increasing chemical reactivity (Pt, Ni, Ti, Cr), on the asymmetric behavior of the leakage current in M/K0.5Na0.5NbO3/Pt(111) micro-capacitors, where M stands for the top metallic electrode. For all electrodes we found a marked leakage asymmetry that we ascribed to the presence of a Schottky-like rectifying junction at the M/K0.5Na0.5NbO3/Pt(111) bottom interface, while the corresponding junction at the top interface is deeply affected by the creation of oxygen vacancies due to oxygen scavenging during the growth of the top metallic electrodes, leading to an almost ohmic top contact. The leakage increases with the reactivity of the electrodes, while the asymmetry decreases, thus suggesting that the creation of the top metal/K0.5Na0.5NbO3 interface generates oxygen vacancies diffusing down to the bottom interface and impacting on the rectifying behavior of the Schottky-like junction. Noteworthy, this asymmetric conduction can reflect in an asymmetric piezoelectric and ferroelectric behavior, as a sizable portion of the applied voltage drops across the rectifying junction in reverse bias, thus hampering symmetric bipolar operation, especially in leaky materials

    Increased p21 expression in chondrocytes of achondroplasic children independently from the presence of the G380R FGFR3 mutation

    Get PDF
    Background. Achondroplasia (ACH) represents the major cause of dwarfi sm and is due to mutations in the fi broblast growth factor receptor 3 (FGFR3) gene. The cellular mechanisms involved in the reduced growth have been mainly described for in vitro or in vivo models, but few data have been obtained for humans. Methods. Thirteen children with ACH were enrolled in the study; the presence of FGFR3 mutations was determined by restriction fragment length polymorphism analysis and sequencing, whereas protein expression in cartilage biopsy was assessed by immunohistochemistry. Results. Chondrocytes in cartilage biopsies of ACH children were characterized by the presence of growth arrest mediated by STAT activation (both STAT1 and STAT5) and increased expression of p21 and cyclin D1, whereas no expression of either p53 or cyclin D3 could be detected. This mechanism was present in ACH children carrying the G380R mutation but also in a patient in whom no mutation could be detected in the entire coding region of the FGFR3 gene. Conclusions. These data thus demonstrate the presence of a common fi nal mechanism involving p21 and possibly leading to a block in chondrocyte proliferation

    Towards a magnetoresistive platform for neural signal recording

    Get PDF
    A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices
    • …
    corecore