15 research outputs found
Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis
Excessive cyclo-oxygenase-2 (COX-2) induction may play a role in chronic neurological diseases characterized by inflammation and astrogliosis. We have previously identified an astroglial receptor for extracellular nucleotides, a P2Y receptor, whose stimulation leads to arachidonic acid (AA) release, followed, 3 days later, by morphological changes resembling reactive astrogliosis. Since COX-2 may be upregulated by AA metabolites, we assessed a possible role for COX-2 in P2Y receptor-mediated astrogliosis. A brief challenge of rat astrocytes with the ATP analogue α,β-methylene ATP (α,βmeATP) resulted, 24 h later, in significantly increased COX-2 expression. The selective COX-2 inhibitor NS-398 completely abolished α,βmeATP-induced astrocytic activation. Constitutive astroglial COX-1 or COX-2 did not play any role in purine-induced reactive astrogliosis. PGE(2), a main metabolite of COX-2, also induced astrocytic activation. These data suggest that a P2Y receptor mediates reactive astrogliosis via induction of COX-2. Antagonists selective for this receptor may counteract excessive COX-2 activation in both acute and chronic neurological diseases
Pharmacological characterisation of CR6086, a potent prostaglandin E2 receptor 4 antagonist, as a new potential disease-modifying anti-rheumatic drug
Abstract Background Prostaglandin E2 (PGE2) acts via its EP4 receptor as a cytokine amplifier (e.g., interleukin [IL]-6) and induces the differentiation and expansion of inflammatory T-helper (Th) lymphocytes. These mechanisms play a key role in the onset and progression of rheumatoid arthritis (RA). We present the pharmacological characterisation of CR6086, a novel EP4 receptor antagonist, and provide evidence for its potential as a disease-modifying anti-rheumatic drug (DMARD). Methods CR6086 affinity and pharmacodynamics were studied in EP4-expressing HEK293 cells by radioligand binding and cyclic adenosine monophosphate (cAMP) production, respectively. In immune cells, IL-6 and vascular endothelial growth factor (VEGF) expression were analysed by RT-PCR, and IL-23 and IL-17 release were measured by enzyme-linked immunosorbent assay (ELISA). In collagen-induced arthritis (CIA) models, rats or mice were immunised with bovine collagen type II. Drugs were administered orally (etanercept and methotrexate intraperitoneally) starting at disease onset. Arthritis progression was evaluated by oedema, clinical score and histopathology. Anti-collagen II immunoglobulin G antibodies were measured by ELISA. Results CR6086 showed selectivity and high affinity for the human EP4 receptor (K i = 16.6 nM) and functioned as a pure antagonist (half-maximal inhibitory concentration, 22 nM) on PGE2-stimulated cAMP production. In models of human immune cells in culture, CR6086 reduced key cytokine players of RA (IL-6 and VEGF expression in macrophages, IL-23 release from dendritic cells, IL-17 release from Th17 cells). In the CIA model of RA in rats and mice, CR6086 significantly improved all features of arthritis: severity, histology, inflammation and pain. In rats, CR6086 was better than the selective cyclooxygenase-2 inhibitor rofecoxib and at least as effective as the Janus kinase inhibitor tofacitinib. In mice, CR6086 and the biologic DMARD etanercept were highly effective, whereas the non-steroidal anti-inflammatory drug naproxen was ineffective. Importantly, in a study of CR6086/methotrexate, combined treatment greatly improved the effect of a fully immunosuppressive dose of methotrexate. Conclusions CR6086 is a novel, potent EP4 antagonist showing favourable immunomodulatory properties, striking DMARD effects in rodents, and anti-inflammatory activity targeted to immune-mediated inflammatory diseases and distinct from the general effects of cyclooxygenase inhibitors. These results support the clinical development of CR6086, both as a stand-alone DMARD and as a combination therapy with methotrexate. The proof-of-concept trial in patients with RA is ongoing
Nitric oxide modulation of transcellular biosynthesis of cys-leukotrienes in rabbit leukocyte-perfused heart
1. We have studied the role of nitric oxide (NO) in the regulation of the transcellular biosynthesis of sulphidopeptide leukotrienes (cys-LT) generated upon neutrophil-vascular wall interactions and their functional consequences, in the spontaneously beating, cell-perfused, heart of the rabbit. 2. Hearts were perfused under recirculating conditions (50 ml) with 5×10(6) purified human neutrophils (PMNL), and challenged with 0.5 μM A-23187 for 30 min. Coronary perfusion pressure (CPP) and left-ventricular end-diastolic pressure (LVEDP) were monitored. Cys-LT formation was measured by reversed phase high performance liquid chromatography (h.p.l.c.) and u.v. spectral analysis. Myeloperoxidase (MPO) enzyme activity, assayed in aliquots of the recirculating buffer, was used as a marker of PMNL adhesion to the coronary endothelium. 3. Basal CPP and LVEDP values averaged 45±1.4 mmHg and 5±0.1 mmHg, respectively; A-23187 triggered an increase in CPP (134±9 mmHg, at 30 min) which was significantly attenuated by pretreatment with L-arginine, 100 μM (90±3 mmHg, at 30 min). Pretreatment with N(G)-monomethyl-L-arginine, 10 μM (L-NMMA), induced a marked increase in CPP (290±40 mmHg, at 20 min) and in LVEDP (47±16 mmHg), so pronounced that it caused cardiac arrest in systole in 5 out of 6 hearts and these were prevented by L-arginine, 100 μM (CPP 115±10 mmHg, LVEDP 6±1.1 mmHg, at 30 min). 4. The increase in CPP was accompanied by the release of cys-LT in the circulating buffer, which was reduced significantly by L-arginine. Pretreatment with L-NMMA, caused a marked rise in cys-LT concentrations which was prevented by L-arginine. 5. Neither L-arginine nor L-NMMA affected directly the A-23187-induced arachidonic acid (AA) metabolism in isolated PMNL alone. 6. Pretreatment with L-NMMA caused a prompt drop in myeloperoxidase (MPO) activity, suggesting rapid adhesion of PMNL to the coronary wall; this effect was significantly blunted by L-arginine. 7. This study suggests that NO provides cardioprotection in an organ model of transcellular metabolism of cys-LT by preventing PMNL adhesion to the coronary intima
Work-related injuries in young workers: an Italian multicentric epidemiological survey.
Emergency departments records from 33 hospitals were reviewed to disclose work-related injuries occurred in teen-subjects living in 14 Italian cities. During January-June 2000, 317 work-related injuries were reported. Male subjects, 17 year old, working in the industrial field, resulted the most affected, probably due to the fact that among young workers this sex and age class is the most represented one. Cluster analysis identified two groups of work-related injuries: one includes mainly transportation injuries causing lower extremities or multiple body sites traumas. The other is more strictly related to specific working tasks and includes mostly traumas and cut wounds in hand/wrist and head, together with eye lesions. A more intensive supervision on the use of protective equipment, a more appropriate training in hazard recognition and safe work practices, including operation of vehicles in the work site, must be implemented to reduce work-related injuries