7 research outputs found

    Impact of genetic, sociodemographic, and clinical features on antidepressant treatment trajectories in the perinatal period

    Get PDF
    Pregnant women on antidepressants must balance potential fetal harm with the relapse risk. While various clinical and sociodemographic factors are known to influence treatment decisions, the impact of genetic factors remains unexplored. We conducted a cohort study among 2,316 women with diagnosed affective disorders who had redeemed antidepressant prescriptions six months before pregnancy, identified from the Danish Integrated Psychiatric Research study. We calculated polygenic risk scores (PGSs) for major depression (MDD), bipolar disorder (BD), and schizophrenia (SCZ) using individual-level genetic data and summary statistics from genomewide association studies. We retrieved data on sociodemographic and clinical features from national registers. Applying group-based trajectory modeling, we identified four treatment trajectories across pregnancy and postpartum: Continuers (38.2 %), early discontinuers (22.7 %), late discontinuers (23.8 %), and interrupters (15.3 %). All three PGSs were not associated with treatment trajectories; for instance, the relative risk ratio for continuers versus early discontinuers was 0.93 (95 % CI: 0.81-1.06), 0.98 (0.84-1.13), 1.09 (0.95-1.27) for per 1-SD increase in PGS for MDD, BD, and SCZ, respectively. Sociodemographic factors were generally not associated with treatment trajectories, except for the association between primiparity and continuing antidepressant use. Women who received >= 2 classes or a higher dose of antidepressants had a higher probability of being late discontinuers, interrupters, and continuers. The likelihood of continuing antidepressants or restarting antidepressants postpartum increased with the previous antidepressant treatment duration. Our findings indicate that continued antidepressant use during pregnancy is influenced by the severity of the disease rather than genetic predisposition as measured by PGSs

    Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes

    Get PDF
    Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 x 10(-10). Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (r(g) = 0.39, P = 1.68 x 10(-4)). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.Peer reviewe

    Genome-wide association study of placental weight in 65,405 newborns and 113,620 parents reveals distinct and shared genetic influences between placental and fetal growth

    Get PDF
    A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth

    Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth

    No full text

    Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth

    No full text
    corecore