7 research outputs found

    Deep Eutectic Solvents for Purification of Waste Animal Fats and Crude Biodiesel

    Get PDF
    U ovom je radu istražena mogućnost primjene niskotemperaturnih eutektičkih otapala za ekstrakcijsku deacidifikaciju otpadnih životinjskih masti te uklanjanje glicerola i glicerida iz sirovog biodizela. Istraživanje je uključilo odabir povoljnog katalizatora te masenog omjera katalizatora, metanola i masti koji bi rezultirali najvećom konverzijom triglicerida u metilne estere masnih kiselina. Definirano je potrebno vrijeme pročiŔćavanja sirovog biodizela te optimalan maseni omjer otapala i sirovog biodizela. Ekstrakcijskom deacidifikacijom pomoću niskotemperaturnog eutektičkog otapala na bazi kalijeva karbonata uspjeÅ”no je reducirana kiselost sirovine uz relativno mali utroÅ”ak otapala (maseni omjer otapala i masti: 0,25 : 1,00) i kratko vrijeme trajanja procesa (30 min). Kalijev hidroksid pokazao se kao učinkovitiji katalizator. Udio katalizatora u reakcijskoj smjesi utječe viÅ”e na konverziju masti od udjela metanola. Udio glicerola i glicerida reduciran je ekstrakcijom pomoću niskotemperaturnog eutektičkog otapala na bazi kolin klorida na vrijednosti manje od standardom propisane vrijednosti (EN 14214:2019). Odabrano se otapalo pokazalo selektivnim zbog toga Å”to nije doÅ”lo do redukcije udjela metilnih estera. Pri masenom omjeru otapala i biodizela 1 : 1 i 90 min trajanja ekstrakcije postignuti su najbolji rezultati. PročiŔćeni biodizel također zadovoljava standard kvalitete s obzirom na udio estera, gustoću i viskoznost.Given the fact that biodiesel produced from oil used in the food industry is not competitive with fossil-based diesel, it is necessary to use cheaper raw materials for its production. Thereby, waste edible oil, by-products of the manufacturing process of edible oils, inedible oils, and waste animal fat are considered the economically acceptable raw materials. The goal of this work was to investigate the applicability of deep eutectic solvents for extractive deacidification of waste animal fats and removal of glycerol and glycerides from crude biodiesel. Extractive deacidification of waste animal fat was conducted using deep eutectic solvent potassium carbonate ā€“ ethylene glycol (1 : 10, mol.), and it was used in mass ratio 1 : 4 (solvent : fat), at 60 Ā°C for 30 min. Total acid number was reduced from 26.63 to 1.1 mg KOH/g fat. After purification of the feedstock, biodiesel was synthesised with different catalysts (KOH and NaOH), and KOH exhibited better conversion; therefore it was chosen for further experiments. In order to define the optimal reaction conditions, the influence of mass ratio catalyst : methanol : fat on the conversion of triglycerides into fatty acid methyl esters was investigated. At all reaction conditions, high quality biodiesel was obtained, i.e., the ester content was above the EN 14214 limit (96.5 %). The influence of catalyst load was greater than of methanol. At the highest concentration of catalyst, neutralisation of free fatty acids occurred. Biodiesel synthesised at 1 : 40 : 100 (KOH : methanol : fat) was chosen as the best, and was used for further experiments ā€“ extraction of glycerol and glycerides from crude biodiesel. For that purpose, deep eutectic solvent choline chloride ā€“ ethylene glycol (1 : 2.5, mol.) was used. The influence of mass ratio solvent : biodiesel and extraction duration was investigated. Increase in mass ratio and extraction duration resulted in a slight increase in ester content. To confirm the removal of glycerol and unreacted glycerides, samples of biodiesel before and after extraction were analysed by gas chromatography. Three samples after extraction were chosen ā€“ one at the lowest and one at the highest mass ratio of solvent to biodiesel, and one at the highest duration of extraction. Crude biodiesel contained too high concentrations of free and total glycerol. After extraction for 90 min, a significant reduction was observed ā€“ the extraction efficiencies for free glycerol, diglycerides, triglycerides, and total glycerol were: 90.77 %, 13.19 %, 10.43 %, and 21.59 %, respectively. The content of glycerol and glycerides after extraction was well below the EN 14214 limit. Density and viscosity of biodiesel were within the range defined by the European standard EN 14214

    Integrated microsystem for biodiesel production

    No full text
    Proizvodnja biodizela, neotrovnog kapljevitog goriva koje svoju sve Å”iru primjenu pronalazi kao zamjena ili dodatak dizelu fosilnog podrijetla, u zadnje vrijeme privlači sve veću pozornost. Jedan od najpoznatijih i najznačajnijih reakcijskih puteva sinteze biodizela, reakcija transesterifikacije, predmet je brojnih istraživanja pa je tako analizirana i u okviru ovog rada. Kao jedan od novih reaktorskih sustava za proizvodnju biodizela transesterifikacijom sve veći interes i primjenu pronalaze mikroreaktori. Za provedbu reakcije transesterifikacije u mikroreaktorima, kao i u ostalim reakcijskim sustavima, potrebno je odrediti optimalne reakcijske uvjete potrebne kako bi se dobili iskoriÅ”tenja te udjeli metilnih estera masnih kiselina u skladu s odgovarajućim standardima. Kao polazna sirovina u proizvodnji biodizela najčeŔće se koriste različita ulja i masti prirodnog podrijetla, a kao rezultat procesa transesterifikacije dobiva se produkt koji sadrži komponente koje je potrebno odvojiti kako bi se dobio biodizel čistoće u skladu s odgovarajućim standardima. U okviru ovog rada, a u svrhu proizvodnje biodizela koji zadovoljava standarde, razvijen je integrirani mikrosustav u kojemu je prvo provedena reakcija transesterifikacije u mikroreaktoru, a zatim pročiŔćavanje biodizela u serijski povezanom mikrosustavu. PročiŔćavanje je provedeno u mikroekstraktoru s niskotemperaturnim eutektičkim otapalom koje iz biodizela uklanja zaostale reaktante i dobiveni glicerol pri čemu se dobiva biodizel visoke čistoće. Enzim lipaza, koji je koriÅ”ten za provedbu reakcije transesterifikacije u mikroreaktoru, imobiliziran je na magnetske nanočestice Å”to je omogućilo njegovo zadržavanje u mikroreaktoru i posljedično olakÅ”alo proces pročiŔćavanja biodizela u serijski povezanom mikrosustavu te proces učinilo ekonomski opravdanim. Inaktivacija enzima metanolom, drugim reaktantom u procesu transesterifikacije koji se u pravilu dodaje u suviÅ”ku, jedan je od osnovnih izazova provedbe procesa transesterifikacije katalizirane enzimima. Kao jedno od procesnih rjeÅ”enja ovog izazova primijenjen je mikroreaktorski sustav u kojemu su kao ulazne procesne struje koriÅ”teni čisti metanol te emulzija ulja i enzima pri čemu je proizveden biodizel uz iskoriÅ”tenje od 94 % uz vrijeme zadržavanja, = 20 min. Dodatno je razvijen i integrirani sustav spajanjem mikroreaktora s mikroekstraktorom pri čemu je proizveden biodizel uz iskoriÅ”tenje od 94 % za vrijeme zadržavanja, = 20 min, te uz udio glicerola od 0,019 % (w/w).The production of biodiesel, a non-toxic liquid fuel that has been increasingly used as a replacement or addition to diesel of fossil origin, has recently attracted an increasing attention. One of the best known and most important reaction pathways of biodiesel synthesis, the transesterification reaction, is the subject of numerous studies and was analyzed in this paper. As one of the new reactor systems for biodiesel production by transesterification, microreactors have increased interest and application. To demonstrate transerterification reaction in microreactors, as well as in other reaction systems, it is necessary to determine the optimal reaction conditions needed in order to obtain yields and content of fatty acid methyl esters in accordance with relevant standards. As a starting material in the production of biodiesel, various oils and fats of natural origin are commonly used, and as a result of the transesterification process, a product is obtained that contains components that need to be separated in order to obtain the purity of biodiesel in accordance with relevant standards. Purpose of this work was biodiesel production of purity defined by relevant quality standards. An integrated microsystem was developed in which the transesterification reaction was firstly carried out in the microreactor leading to the purification of biodiesel in a microsystem connected in series. Purification was performed in a microextractor using a deep eutectic solvent that removes residual reactants and produced glycerol where in the same time biodiesel of high purity is obtained. Lipase, which was used to carry out the transesterification reaction was immobilized on magnetic nanoparticles, which enabled enzyme retention in a microreactor and consequently facilitated the process of purification of biodiesel integrated microsystem and made the process economically sustainable. Inactivation of the enzyme by methanol, another reactant in the transesterification process which is generally added in excess, is one of the primary challenges of enzyme-catalyzed transesterification processes. As one of the possible process solutions, a microreactor system was used in which pure methanol and emulsion of oil and enzyme were used as process inlets where biodiesel was produced with a yield of 94 % for the retention time of = 20 min. Additionally, an integrated system was developed by combining the microreactor with a microextractor. In this system biodiesel was produced with a yield of 94 % for the retention time of = 20 min, and with glycerol content of 0,019 % (w/w)

    Synthesis of ionic liquids and deep eutectic solvents

    No full text
    ''Zelena'' kemija je dio kemije koja se u zadnja dva desetljeća intenzivno razvija, a koja između ostalog kao prioritet stavlja koriÅ”tenje supstancija neopasnih za ljude i okoliÅ”. Kao potencijalna zamjena za organska otapala, koja svojom hlapljivoŔću i toksičnoŔću negativno djeluju na ljudsko zdravlje i okoliÅ”, sve se viÅ”e koriste ionske kapljevine i eutektička otapala. Zbog svojih svojstava ionske kapljevine mogu se prilagoditi specifičnostima različitih procesa, a njihova je primjena u velikom broju industrijskih procesa od pročiŔćavanja plinova ili tla sve do proizvodnje biodizela. Jednostavno ih je sintetizirati i prilagoditi zahtjevima procesa, ali je njihova ekoloÅ”ka prihvatljivost postala upitna. Naime, pri sintezi ionskih kapljevina u nekim slučajevima koriste se tvari nepovoljnog učinka na okoliÅ” koje svojim ispuÅ”tanjem mogu uzrokovati Å”tetno djelovanje na ekosustave ili primjerice toksične soli koje Å”tetno djeluju na zdravlje. Eutektička otapala za razliku od ionskih kapljevina se mogu prirediti iz prirodnih supstancija te zbog toga nemaju negativan učinak na okoliÅ” Å”to im je osnovna prednost u odnosu na ionske kapljevine. Primjena eutektičkih otapala je već i sada rasprostranjena, a koriste se u elektrokemijskim procesima, sintezi materijala i pročiŔćavanju biodizela. U ovom trenutku postoji čitav niz procesa koji se razvijaju, a u kojima se koriste eutektička otapala te je stoga za očekivati da će eutektička otapala, kao i ionske kapljevine, pronaći Å”iroku industrijsku primjenu."Green" chemistry is part of chemistry that is intensifying in the last two decades, which among other things puts the use of substances that are not dangerous to humans and the environment as a priority. As a potential substitute for organic solvents, which volatility and toxicity negatively affect human health and the environment, ionic liquids and eutectic solvents are increasingly used. Because of its properties, ionic liquids can be adapted to the specificities of different processes, and their application has been found in a large number of industrial processes for purifying gases or soils all the way up to biodiesel production. They are simply synthesized and can adapt to process requirements, but their ecological acceptability has become questionable. In some cases, in the synthesis of ionic liquids, substances of adverse environmental effects are used, which by their release can cause negative effects on ecosystems or, for example, toxic salts that are harmful to human health can be used. Eutectic solvents, unlike ionic liquids, can be prepared from natural substances and therefore have no negative effect on the environment that is their primary advantage over ionic liquids. The application of eutectic solvents is already well-spread and they are used in electrochemical processes, synthesis of materials and biodiesel purification. At this point there is a whole series of evolving processes in which eutectic solvents are used and therefore it is expected that eutectic solvents, as well as ionic liquids, will find a wide industrial application

    Integrated microsystem for biodiesel production

    No full text
    Proizvodnja biodizela, neotrovnog kapljevitog goriva koje svoju sve Å”iru primjenu pronalazi kao zamjena ili dodatak dizelu fosilnog podrijetla, u zadnje vrijeme privlači sve veću pozornost. Jedan od najpoznatijih i najznačajnijih reakcijskih puteva sinteze biodizela, reakcija transesterifikacije, predmet je brojnih istraživanja pa je tako analizirana i u okviru ovog rada. Kao jedan od novih reaktorskih sustava za proizvodnju biodizela transesterifikacijom sve veći interes i primjenu pronalaze mikroreaktori. Za provedbu reakcije transesterifikacije u mikroreaktorima, kao i u ostalim reakcijskim sustavima, potrebno je odrediti optimalne reakcijske uvjete potrebne kako bi se dobili iskoriÅ”tenja te udjeli metilnih estera masnih kiselina u skladu s odgovarajućim standardima. Kao polazna sirovina u proizvodnji biodizela najčeŔće se koriste različita ulja i masti prirodnog podrijetla, a kao rezultat procesa transesterifikacije dobiva se produkt koji sadrži komponente koje je potrebno odvojiti kako bi se dobio biodizel čistoće u skladu s odgovarajućim standardima. U okviru ovog rada, a u svrhu proizvodnje biodizela koji zadovoljava standarde, razvijen je integrirani mikrosustav u kojemu je prvo provedena reakcija transesterifikacije u mikroreaktoru, a zatim pročiŔćavanje biodizela u serijski povezanom mikrosustavu. PročiŔćavanje je provedeno u mikroekstraktoru s niskotemperaturnim eutektičkim otapalom koje iz biodizela uklanja zaostale reaktante i dobiveni glicerol pri čemu se dobiva biodizel visoke čistoće. Enzim lipaza, koji je koriÅ”ten za provedbu reakcije transesterifikacije u mikroreaktoru, imobiliziran je na magnetske nanočestice Å”to je omogućilo njegovo zadržavanje u mikroreaktoru i posljedično olakÅ”alo proces pročiŔćavanja biodizela u serijski povezanom mikrosustavu te proces učinilo ekonomski opravdanim. Inaktivacija enzima metanolom, drugim reaktantom u procesu transesterifikacije koji se u pravilu dodaje u suviÅ”ku, jedan je od osnovnih izazova provedbe procesa transesterifikacije katalizirane enzimima. Kao jedno od procesnih rjeÅ”enja ovog izazova primijenjen je mikroreaktorski sustav u kojemu su kao ulazne procesne struje koriÅ”teni čisti metanol te emulzija ulja i enzima pri čemu je proizveden biodizel uz iskoriÅ”tenje od 94 % uz vrijeme zadržavanja, = 20 min. Dodatno je razvijen i integrirani sustav spajanjem mikroreaktora s mikroekstraktorom pri čemu je proizveden biodizel uz iskoriÅ”tenje od 94 % za vrijeme zadržavanja, = 20 min, te uz udio glicerola od 0,019 % (w/w).The production of biodiesel, a non-toxic liquid fuel that has been increasingly used as a replacement or addition to diesel of fossil origin, has recently attracted an increasing attention. One of the best known and most important reaction pathways of biodiesel synthesis, the transesterification reaction, is the subject of numerous studies and was analyzed in this paper. As one of the new reactor systems for biodiesel production by transesterification, microreactors have increased interest and application. To demonstrate transerterification reaction in microreactors, as well as in other reaction systems, it is necessary to determine the optimal reaction conditions needed in order to obtain yields and content of fatty acid methyl esters in accordance with relevant standards. As a starting material in the production of biodiesel, various oils and fats of natural origin are commonly used, and as a result of the transesterification process, a product is obtained that contains components that need to be separated in order to obtain the purity of biodiesel in accordance with relevant standards. Purpose of this work was biodiesel production of purity defined by relevant quality standards. An integrated microsystem was developed in which the transesterification reaction was firstly carried out in the microreactor leading to the purification of biodiesel in a microsystem connected in series. Purification was performed in a microextractor using a deep eutectic solvent that removes residual reactants and produced glycerol where in the same time biodiesel of high purity is obtained. Lipase, which was used to carry out the transesterification reaction was immobilized on magnetic nanoparticles, which enabled enzyme retention in a microreactor and consequently facilitated the process of purification of biodiesel integrated microsystem and made the process economically sustainable. Inactivation of the enzyme by methanol, another reactant in the transesterification process which is generally added in excess, is one of the primary challenges of enzyme-catalyzed transesterification processes. As one of the possible process solutions, a microreactor system was used in which pure methanol and emulsion of oil and enzyme were used as process inlets where biodiesel was produced with a yield of 94 % for the retention time of = 20 min. Additionally, an integrated system was developed by combining the microreactor with a microextractor. In this system biodiesel was produced with a yield of 94 % for the retention time of = 20 min, and with glycerol content of 0,019 % (w/w)

    Integrated microsystem for biodiesel production

    No full text
    Proizvodnja biodizela, neotrovnog kapljevitog goriva koje svoju sve Å”iru primjenu pronalazi kao zamjena ili dodatak dizelu fosilnog podrijetla, u zadnje vrijeme privlači sve veću pozornost. Jedan od najpoznatijih i najznačajnijih reakcijskih puteva sinteze biodizela, reakcija transesterifikacije, predmet je brojnih istraživanja pa je tako analizirana i u okviru ovog rada. Kao jedan od novih reaktorskih sustava za proizvodnju biodizela transesterifikacijom sve veći interes i primjenu pronalaze mikroreaktori. Za provedbu reakcije transesterifikacije u mikroreaktorima, kao i u ostalim reakcijskim sustavima, potrebno je odrediti optimalne reakcijske uvjete potrebne kako bi se dobili iskoriÅ”tenja te udjeli metilnih estera masnih kiselina u skladu s odgovarajućim standardima. Kao polazna sirovina u proizvodnji biodizela najčeŔće se koriste različita ulja i masti prirodnog podrijetla, a kao rezultat procesa transesterifikacije dobiva se produkt koji sadrži komponente koje je potrebno odvojiti kako bi se dobio biodizel čistoće u skladu s odgovarajućim standardima. U okviru ovog rada, a u svrhu proizvodnje biodizela koji zadovoljava standarde, razvijen je integrirani mikrosustav u kojemu je prvo provedena reakcija transesterifikacije u mikroreaktoru, a zatim pročiŔćavanje biodizela u serijski povezanom mikrosustavu. PročiŔćavanje je provedeno u mikroekstraktoru s niskotemperaturnim eutektičkim otapalom koje iz biodizela uklanja zaostale reaktante i dobiveni glicerol pri čemu se dobiva biodizel visoke čistoće. Enzim lipaza, koji je koriÅ”ten za provedbu reakcije transesterifikacije u mikroreaktoru, imobiliziran je na magnetske nanočestice Å”to je omogućilo njegovo zadržavanje u mikroreaktoru i posljedično olakÅ”alo proces pročiŔćavanja biodizela u serijski povezanom mikrosustavu te proces učinilo ekonomski opravdanim. Inaktivacija enzima metanolom, drugim reaktantom u procesu transesterifikacije koji se u pravilu dodaje u suviÅ”ku, jedan je od osnovnih izazova provedbe procesa transesterifikacije katalizirane enzimima. Kao jedno od procesnih rjeÅ”enja ovog izazova primijenjen je mikroreaktorski sustav u kojemu su kao ulazne procesne struje koriÅ”teni čisti metanol te emulzija ulja i enzima pri čemu je proizveden biodizel uz iskoriÅ”tenje od 94 % uz vrijeme zadržavanja, = 20 min. Dodatno je razvijen i integrirani sustav spajanjem mikroreaktora s mikroekstraktorom pri čemu je proizveden biodizel uz iskoriÅ”tenje od 94 % za vrijeme zadržavanja, = 20 min, te uz udio glicerola od 0,019 % (w/w).The production of biodiesel, a non-toxic liquid fuel that has been increasingly used as a replacement or addition to diesel of fossil origin, has recently attracted an increasing attention. One of the best known and most important reaction pathways of biodiesel synthesis, the transesterification reaction, is the subject of numerous studies and was analyzed in this paper. As one of the new reactor systems for biodiesel production by transesterification, microreactors have increased interest and application. To demonstrate transerterification reaction in microreactors, as well as in other reaction systems, it is necessary to determine the optimal reaction conditions needed in order to obtain yields and content of fatty acid methyl esters in accordance with relevant standards. As a starting material in the production of biodiesel, various oils and fats of natural origin are commonly used, and as a result of the transesterification process, a product is obtained that contains components that need to be separated in order to obtain the purity of biodiesel in accordance with relevant standards. Purpose of this work was biodiesel production of purity defined by relevant quality standards. An integrated microsystem was developed in which the transesterification reaction was firstly carried out in the microreactor leading to the purification of biodiesel in a microsystem connected in series. Purification was performed in a microextractor using a deep eutectic solvent that removes residual reactants and produced glycerol where in the same time biodiesel of high purity is obtained. Lipase, which was used to carry out the transesterification reaction was immobilized on magnetic nanoparticles, which enabled enzyme retention in a microreactor and consequently facilitated the process of purification of biodiesel integrated microsystem and made the process economically sustainable. Inactivation of the enzyme by methanol, another reactant in the transesterification process which is generally added in excess, is one of the primary challenges of enzyme-catalyzed transesterification processes. As one of the possible process solutions, a microreactor system was used in which pure methanol and emulsion of oil and enzyme were used as process inlets where biodiesel was produced with a yield of 94 % for the retention time of = 20 min. Additionally, an integrated system was developed by combining the microreactor with a microextractor. In this system biodiesel was produced with a yield of 94 % for the retention time of = 20 min, and with glycerol content of 0,019 % (w/w)

    Synthesis of ionic liquids and deep eutectic solvents

    No full text
    ''Zelena'' kemija je dio kemije koja se u zadnja dva desetljeća intenzivno razvija, a koja između ostalog kao prioritet stavlja koriÅ”tenje supstancija neopasnih za ljude i okoliÅ”. Kao potencijalna zamjena za organska otapala, koja svojom hlapljivoŔću i toksičnoŔću negativno djeluju na ljudsko zdravlje i okoliÅ”, sve se viÅ”e koriste ionske kapljevine i eutektička otapala. Zbog svojih svojstava ionske kapljevine mogu se prilagoditi specifičnostima različitih procesa, a njihova je primjena u velikom broju industrijskih procesa od pročiŔćavanja plinova ili tla sve do proizvodnje biodizela. Jednostavno ih je sintetizirati i prilagoditi zahtjevima procesa, ali je njihova ekoloÅ”ka prihvatljivost postala upitna. Naime, pri sintezi ionskih kapljevina u nekim slučajevima koriste se tvari nepovoljnog učinka na okoliÅ” koje svojim ispuÅ”tanjem mogu uzrokovati Å”tetno djelovanje na ekosustave ili primjerice toksične soli koje Å”tetno djeluju na zdravlje. Eutektička otapala za razliku od ionskih kapljevina se mogu prirediti iz prirodnih supstancija te zbog toga nemaju negativan učinak na okoliÅ” Å”to im je osnovna prednost u odnosu na ionske kapljevine. Primjena eutektičkih otapala je već i sada rasprostranjena, a koriste se u elektrokemijskim procesima, sintezi materijala i pročiŔćavanju biodizela. U ovom trenutku postoji čitav niz procesa koji se razvijaju, a u kojima se koriste eutektička otapala te je stoga za očekivati da će eutektička otapala, kao i ionske kapljevine, pronaći Å”iroku industrijsku primjenu."Green" chemistry is part of chemistry that is intensifying in the last two decades, which among other things puts the use of substances that are not dangerous to humans and the environment as a priority. As a potential substitute for organic solvents, which volatility and toxicity negatively affect human health and the environment, ionic liquids and eutectic solvents are increasingly used. Because of its properties, ionic liquids can be adapted to the specificities of different processes, and their application has been found in a large number of industrial processes for purifying gases or soils all the way up to biodiesel production. They are simply synthesized and can adapt to process requirements, but their ecological acceptability has become questionable. In some cases, in the synthesis of ionic liquids, substances of adverse environmental effects are used, which by their release can cause negative effects on ecosystems or, for example, toxic salts that are harmful to human health can be used. Eutectic solvents, unlike ionic liquids, can be prepared from natural substances and therefore have no negative effect on the environment that is their primary advantage over ionic liquids. The application of eutectic solvents is already well-spread and they are used in electrochemical processes, synthesis of materials and biodiesel purification. At this point there is a whole series of evolving processes in which eutectic solvents are used and therefore it is expected that eutectic solvents, as well as ionic liquids, will find a wide industrial application

    Synthesis of ionic liquids and deep eutectic solvents

    No full text
    ''Zelena'' kemija je dio kemije koja se u zadnja dva desetljeća intenzivno razvija, a koja između ostalog kao prioritet stavlja koriÅ”tenje supstancija neopasnih za ljude i okoliÅ”. Kao potencijalna zamjena za organska otapala, koja svojom hlapljivoŔću i toksičnoŔću negativno djeluju na ljudsko zdravlje i okoliÅ”, sve se viÅ”e koriste ionske kapljevine i eutektička otapala. Zbog svojih svojstava ionske kapljevine mogu se prilagoditi specifičnostima različitih procesa, a njihova je primjena u velikom broju industrijskih procesa od pročiŔćavanja plinova ili tla sve do proizvodnje biodizela. Jednostavno ih je sintetizirati i prilagoditi zahtjevima procesa, ali je njihova ekoloÅ”ka prihvatljivost postala upitna. Naime, pri sintezi ionskih kapljevina u nekim slučajevima koriste se tvari nepovoljnog učinka na okoliÅ” koje svojim ispuÅ”tanjem mogu uzrokovati Å”tetno djelovanje na ekosustave ili primjerice toksične soli koje Å”tetno djeluju na zdravlje. Eutektička otapala za razliku od ionskih kapljevina se mogu prirediti iz prirodnih supstancija te zbog toga nemaju negativan učinak na okoliÅ” Å”to im je osnovna prednost u odnosu na ionske kapljevine. Primjena eutektičkih otapala je već i sada rasprostranjena, a koriste se u elektrokemijskim procesima, sintezi materijala i pročiŔćavanju biodizela. U ovom trenutku postoji čitav niz procesa koji se razvijaju, a u kojima se koriste eutektička otapala te je stoga za očekivati da će eutektička otapala, kao i ionske kapljevine, pronaći Å”iroku industrijsku primjenu."Green" chemistry is part of chemistry that is intensifying in the last two decades, which among other things puts the use of substances that are not dangerous to humans and the environment as a priority. As a potential substitute for organic solvents, which volatility and toxicity negatively affect human health and the environment, ionic liquids and eutectic solvents are increasingly used. Because of its properties, ionic liquids can be adapted to the specificities of different processes, and their application has been found in a large number of industrial processes for purifying gases or soils all the way up to biodiesel production. They are simply synthesized and can adapt to process requirements, but their ecological acceptability has become questionable. In some cases, in the synthesis of ionic liquids, substances of adverse environmental effects are used, which by their release can cause negative effects on ecosystems or, for example, toxic salts that are harmful to human health can be used. Eutectic solvents, unlike ionic liquids, can be prepared from natural substances and therefore have no negative effect on the environment that is their primary advantage over ionic liquids. The application of eutectic solvents is already well-spread and they are used in electrochemical processes, synthesis of materials and biodiesel purification. At this point there is a whole series of evolving processes in which eutectic solvents are used and therefore it is expected that eutectic solvents, as well as ionic liquids, will find a wide industrial application
    corecore