316 research outputs found
Nonlinear Self-Trapping of Matter Waves in Periodic Potentials
We report the first experimental observation of nonlinear self-trapping of
Bose-condensed 87Rb atoms in a one dimensional waveguide with a superimposed
deep periodic potential . The trapping effect is confirmed directly by imaging
the atomic spatial distribution. Increasing the nonlinearity we move the system
from the diffusive regime, characterized by an expansion of the condensate, to
the nonlinearity dominated self-trapping regime, where the initial expansion
stops and the width remains finite. The data are in quantitative agreement with
the solutions of the corresponding discrete nonlinear equation. Our results
reveal that the effect of nonlinear self-trapping is of local nature, and is
closely related to the macroscopic self-trapping phenomenon already predicted
for double-well systems.Comment: 5 pages, 4 figure
Towards many colors in FISH on 3D-preserved interphase nuclei
The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel
Collective Excitations of Bose-Einstein Condensates in a Double-Well Potential
We investigate collective excitations of Bose-Einstein condensates at
absolute zero in a double-well trap. We solve the Bogoliubov equations with a
double-well trap, and show that the crossover from the dipole mode to the
Josephson plasma mode occurs in the lowest energy excitation. It is found that
the anomalous tunneling property of low energy excitations is crucial to the
crossover.Comment: 14 pages, 6 figure
Quantum Dynamics of Atom-molecule BECs in a Double-Well Potential
We investigate the dynamics of two-component Bose-Josephson junction composed
of atom-molecule BECs. Within the semiclassical approximation, the multi-degree
of freedom of this system permits chaotic dynamics, which does not occur in
single-component Bose-Josephson junctions. By investigating the level
statistics of the energy spectra using the exact diagonalization method, we
evaluate whether the dynamics of the system is periodic or non-periodic within
the semiclassical approximation. Additionally, we compare the semiclassical and
full-quantum dynamics.Comment: to appear in JLTP - QFS 200
Bright gap solitons of atoms with repulsive interaction
We report on the first experimental observation of bright matter-wave
solitons for 87Rb atoms with repulsive atom-atom interaction. This counter
intuitive situation arises inside a weak periodic potential, where anomalous
dispersion can be realized at the Brillouin zone boundary. If the coherent
atomic wavepacket is prepared at the corresponding band edge a bright soliton
is formed inside the gap. The strength of our system is the precise control of
preparation and real time manipulation, allowing the systematic investigation
of gap solitons.Comment: 4 pages, 4 figure
Realization of a single Josephson junction for Bose-Einstein condensates
We report on the realization of a double-well potential for Rubidium-87
Bose-Einstein condensates. The experimental setup allows the investigation of
two different dynamical phenomena known for this system - Josephson
oscillations and self-trapping. We give a detailed discussion of the
experimental setup and the methods used for calibrating the relevant
parameters. We compare our experimental findings with the predictions of an
extended two-mode model and find quantitative agreement
Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates
Squeezed states, a special kind of entangled states, are known as a useful
resource for quantum metrology. In interferometric sensors they allow to
overcome the "classical" projection noise limit stemming from the independent
nature of the individual photons or atoms within the interferometer. Motivated
by the potential impact on metrology as wells as by fundamental questions in
the context of entanglement, a lot of theoretical and experimental effort has
been made to study squeezed states. The first squeezed states useful for
quantum enhanced metrology have been proposed and generated in quantum optics,
where the squeezed variables are the coherences of the light field. In this
tutorial we focus on spin squeezing in atomic systems. We give an introduction
to its concepts and discuss its generation in Bose-Einstein condensates. We
discuss in detail the experimental requirements necessary for the generation
and direct detection of coherent spin squeezing. Two exemplary experiments
demonstrating adiabatically prepared spin squeezing based on motional degrees
of freedom and diabatically realized spin squeezing based on internal hyperfine
degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure
Conduction of Ultracold Fermions Through a Mesoscopic Channel
In a mesoscopic conductor electric resistance is detected even if the device
is defect-free. We engineer and study a cold-atom analog of a mesoscopic
conductor. It consists of a narrow channel connecting two macroscopic
reservoirs of fermions that can be switched from ballistic to diffusive. We
induce a current through the channel and find ohmic conduction, even for a
ballistic channel. An analysis of in-situ density distributions shows that in
the ballistic case the chemical potential drop occurs at the entrance and exit
of the channel, revealing the presence of contact resistance. In contrast, a
diffusive channel with disorder displays a chemical potential drop spread over
the whole channel. Our approach opens the way towards quantum simulation of
mesoscopic devices with quantum gases
- …
