15 research outputs found

    Translational actomyosin research: fundamental insights and applications hand in hand

    Full text link

    Molecular motors on lipid bilayers and silicon dioxide: different driving forces for adsorption

    No full text
    Understanding how different types of interactions govern adsorption of the myosin motor fragment heavy meromyosin (HMM) onto different substrates is important in functional studies of actomyosin and for the development of motor powered lab-on-a-chip applications. In this study, we have combined in vitro motility assays and quartz crystal microbalance with dissipation (QCM-D) monitoring to investigate the underlying adsorption mechanisms of HMM onto supported lipid bilayers in comparison with pure and silanized SiO2. The QCM-D results, combined with data showing actin transportation by HMM adsorbed onto positively charged supported lipid bilayers, suggest reversible HMM surface adsorption via the negatively charged coiled-coil tail region. In contrast, the QCM-D data for HMM adsorption onto negatively charged lipids support a model according to which HMM adsorbs onto negatively charged surfaces largely via the positively charged actin binding regions. Adsorption studies at low (30-65 mM) and high (185-245 mM) ionic strengths onto piranha cleaned SiO2 surfaces (contact angle < 20 degrees) support this general model. However, unlike the situation for charged lipids, rinsing in high ionic strength solution caused only partial HMM desorption from SiO2, without restoration of actin propulsion by the remaining HMM molecules. This suggests that mechanisms other than electrostatic interactions are involved in the tethering of HMM heads to SiO2 surfaces. An expanded model for HMM adsorption is formulated on the basis of the data and the potential of the results for nanotechnological applications of actomyosin is discussed

    Sample solution constraints on motor-driven diagnostic nanodevices.

    No full text
    The last decade has seen appreciable advancements in efforts towards increased portability of lab-on-a-chip devices by substituting microfluidics with molecular motor-based transportation. As of now, first proof-of-principle devices have analyzed protein mixtures of low complexity, such as target protein molecules in buffer solutions optimized for molecular motor performance. However, in a diagnostic work-up, lab-on-a-chip devices need to be compatible with complex biological samples. While it has been shown that such samples do not interfere with crucial steps in molecular diagnostics (for example antibody-antigen recognition), their effect on molecular motors is unknown. This critical and long overlooked issue is addressed here. In particular, we studied the effects of blood, cell lysates and solutions containing genomic DNA extracts on actomyosin and kinesin-microtubule-based transport, the two biomolecular motor systems that are most promising for lab-on-a-chip applications. We found that motor function is well preserved at defined dilutions of most of the investigated biological samples and demonstrated a molecular motor-driven label-free blood type test. Our results support the feasibility of molecular-motor driven nanodevices for diagnostic point-of-care applications and also demonstrate important constraints imposed by sample composition and device design that apply both to kinesin-microtubule and actomyosin driven applications

    Heavy Meromyosin Molecules Extending More Than 50 nm above Adsorbing Electronegative Surfaces

    No full text
    In the in vitro motility assay, actin filaments are propelled by surface-adsorbed myosin motors, or rather, myosin motor fragments such as heavy meromyosin (HMM). Recently, efforts have been made to develop actomyosin powered nanodevices on the basis of this assay but such developments are hampered by limited understanding of the HMM adsorption geometry. Therefore, we here investigate the HMM adsorption geometries on trimethylchlorosilane-[TMCS-] derivatized hydrophobic surfaces and on hydrophilic negatively charged surfaces (SiO2). The TMCS surface is of great relevance in fundamental studies of actomyosin and both surface substrates are important for the development of motor powered nanodevices. Whereas both the TMCS and SiO2 surfaces were nearly saturated with HMM (incubation at 120 mu g mL(-1)) there was little actin binding on SiO2 in the absence of ATP and no filament sliding in the presence of ATP. This contrasts with excellent actin-binding and motility on TMCS. Quartz crystal microbalance with dissipation (QCM-D) studies demonstrate a HMM layer with substantial protein mass up to 40 nm above the TMCS surface, considerably more than observed for myosin subfragment 1 (SI; 6 nm). Together with the excellent actin transportation on TMCS, this strongly suggests that HMM adsorbs to TMCS mainly via its most C-terminal tail part. Consistent with this idea, fluorescence interference contrast (FLIC) microscopy showed that actin filaments are held by HMM 38 +/- 2 nm above the TMCS-surface with the catalytic site, on averge, 20-30 nm above the surface. Viewed in a context with FLIC, QCM-D and TIRF results, the lack of actin motility and the limited actin binding on SiO2 shows that HMM adsorbs largely via the actin-binding region on this surface with the C-terminal coiled-coil tails extending > 50 nm into solution. The results and new insights from this study are of value, not only for the development of motor powered nanodevices but also for the interpretation of fundamental biophysical studies of actomyosin function and for the understanding of surface protein interactions in general

    Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    Get PDF
    <p>Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments ("side-attached") or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (> 100 mu m) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10-50 streptavidin molecules, 1-10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.</p>
    corecore