285 research outputs found

    Models predicting the growth response to growth hormone treatment in short children independent of GH status, birth size and gestational age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models can be used to predict individual growth responses to growth hormone (GH) therapy. The aim of this study was to construct and validate high-precision models to predict the growth response to GH treatment of short children, independent of their GH status, birth size and gestational age. As the GH doses are included, these models can be used to individualize treatment.</p> <p>Methods</p> <p>Growth data from 415 short prepubertal children were used to construct models for predicting the growth response during the first years of GH therapy. The performance of the models was validated with data from a separate cohort of 112 children using the same inclusion criteria.</p> <p>Results</p> <p>Using only auxological data, the model had a standard error of the residuals (SD<sub>res</sub>), of 0.23 SDS. The model was improved when endocrine data (GH<sub>max </sub>profile, IGF-I and leptin) collected before starting GH treatment were included. Inclusion of these data resulted in a decrease of the SD<sub>res </sub>to 0.15 SDS (corresponding to 1.1 cm in a 3-year-old child and 1.6 cm in a 7-year old). Validation of these models with a separate cohort, showed similar SD<sub>res </sub>for both types of models. Preterm children were not included in the Model group, but predictions for this group were within the expected range.</p> <p>Conclusion</p> <p>These prediction models can with high accuracy be used to identify short children who will benefit from GH treatment. They are clinically useful as they are constructed using data from short children with a broad range of GH secretory status, birth size and gestational age.</p

    The first-year growth response to growth hormone treatment predicts the long-term prepubertal growth response in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pretreatment auxological variables, such as birth size and parental heights, are important predictors of the growth response to GH treatment. For children with missing pretreatment data, published prediction models cannot be used.</p> <p>The objective was to construct and validate a prediction model for children with missing background data based on the observed first-year growth response to GH. The accuracy and reliability of the model should be comparable with our previously published prediction model relying on pretreatment data. The design used was mathematical curve fitting on observed growth response data from children treated with a GH dose of 33 μg/kg/d.</p> <p>Methods</p> <p>Growth response data from 162 prepubertal children born at term were used to construct the model; the group comprised of 19% girls, 80% GH-deficient and 23% born SGA. For validation, data from 205 other children fulfilling the same inclusion and treatment criteria as the model group were used. The model was also tested on data from children born prematurely, children from other continents and children receiving a GH dose of 67 μg/kg/d.</p> <p>Results</p> <p>The GH response curve was similar for all children, but with an individual amplitude. The curve SD score depends on an individual factor combining the effect of dose and growth, the 'Response Score', and time on treatment, making prediction possible when the first-year growth response is known. The prediction interval (± 2 SD<sub>res</sub>) was ± 0.34 SDS for the second treatment year growth response, corresponding to ± 1.2 cm for a 3-year-old child and ± 1.8 cm for a 7-year-old child. For the 1–4-year prediction, the SD<sub>res </sub>was 0.13 SDS/year and for the 1–7-year prediction it was 0.57 SDS (i.e. < 0.1 SDS/year).</p> <p>Conclusion</p> <p>The model based on the observed first-year growth response on GH is valid worldwide for the prediction of up to 7 years of prepubertal growth in children with GHD/ISS, born AGA/SGA and born preterm/term, and can be used as an aid in medical decision making.</p

    Continuous growth reference from 24th week of gestation to 24 months by gender

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth charts and child growth assessment have become prime global instruments in child health practice over the 30 years. An updated, continuous growth standard that bridges size at birth values with postnatal growth values can improve child growth screening and monitoring.</p> <p>Methods</p> <p>This novel growth chart was constructed from two sources of information. Size at birth (weight, length and head circumference) reference values were updated based on information of normal deliveries (i.e. singleton live births without severe congenital malformation, with healthy mothers and born vaginally) from the Swedish Medical Birth Registry, 1990–1999 (n = 810393). Weight was evaluated using logarithmic transformation as for postnatal weight. Standard deviations were estimated from data within the empirical mean ± 1.0 SD for each gestational week and gender. These values were smoothed by empirical curve-fitting together with values from our recently published postnatal growth reference including 3650 longitudinally followed children from birth to final height <abbrgrp><abbr bid="B9">9</abbr></abbrgrp>. Timescale and weight axes were made logarithmic in order to magnify the early time part of the graph.</p> <p>Results</p> <p>This study presents the first continuous gender specific growth chart from birth irrespective of gestational age at birth until 2 years of age for weight, length and head circumference. Birth weight at 40 weeks of gestation increased approximately 100 gram and length increased only 1 mm compared with earlier Swedish reference from 1977–81. The curve is now less S-shaped as compared with earlier curves and compared with 4 curves from other countries and with more constant variation over the whole range.</p> <p>Conclusion</p> <p>Our values picture the unrestricted pattern of growth improving the detection of a deviating growth pattern, when the growth of an individual infant is plotted on the charts. Especially for very preterm infants age corrected growth can be more easily evaluated although it must be recognized that the early comparison is with what is estimated as normal growth in uterus. The reference values are useful in child health care systems for population screening, but also in research or in the clinic for evaluating various growth promoting interventions – either nutritional, surgical or therapeutic – that might affect a child in early life.</p

    The Public Domain

    Get PDF
    Background/Aims: Growth Hormone (GH) dosage in childhood is adjusted for body size, but there is no consensus whether body weight (BW) or body surface area (BSA) should be used. We aimed at comparing the biological effect and cost-effectiveness of GH treatment dosed per m(2) BSA in comparison with dosing per kg BW in girls with Turner syndrome (TS). Methods: Serum IGF-I, GH dose, and adult height gain (AHG) from girls participating in two Dutch and five Swedish studies on the efficacy of GH were analyzed, and the cumulative GH dose and costs were calculated for both dose adjustment methods. Additional medication included estrogens (if no spontaneous puberty occurred) and oxandrolone in some studies. Results: At each GH dose, the serum IGF-I standard deviation score remained stable over time after an initial increase after the start of treatment. On a high dose (at 1 m(2) equivalent to 0.056-0.067 mg/kg/day), AHG was at least equal on GH dosed per m(2) BSA compared with dosing per kg BW. The cumulative dose and cost were significantly lower if the GH dose was adjusted for m(2) BSA. Conclusion: Dosing GH per m(2) BSA is at least as efficacious as dosing per kg BW, and is more cost-effective. (c) 2014 S. Karger AG, Basel

    Prediction models for short children born small for gestational age (SGA) covering the total growth phase. Analyses based on data from KIGS (Pfizer International Growth Database)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models can be developed to predict growth in short children treated with growth hormone (GH). These models can serve to optimize and individualize treatment in terms of height outcomes and costs. The aims of this study were to compile existing prediction models for short children born SGA (SGA), to develop new models and to validate the algorithms.</p> <p>Methods</p> <p>Existing models to predict height velocity (HV) for the first two and the fourth prepubertal years and during total pubertal growth (TPG) on GH were applied to SGA children from the KIGS (Pfizer International Growth Database) - 1<sup>st </sup>year: N = 2340; 2<sup>nd </sup>year: N = 1358; 4<sup>th </sup>year: N = 182; TPG: N = 59. A new prediction model was developed for the 3<sup>rd </sup>prepubertal year based upon 317 children by means of the all-possible regression approach, using Mallow's C(p) criterion.</p> <p>Results</p> <p>The comparison between the observed and predicted height velocity showed no significant difference when the existing prediction models were applied to new cohorts. A model for predicting HV during the 3<sup>rd </sup>year explained 33% of the variability with an error SD of 1.0 cm/year. The predictors were (in order of importance): HV previous year; chronological age; weight SDS; mid-parent height SDS and GH dose.</p> <p>Conclusions</p> <p>Models to predict growth to GH from prepubertal years to adult height are available for short children born SGA. The models utilize easily accessible predictors and are accurate. The overall explained variability in SGA is relatively low, due to the heterogeneity of the disorder. The models can be used to provide patients with a realistic expectation of treatment, and may help to identify compliance problems or other underlying causes of treatment failure.</p

    Catch-up growth up to ten years of age in children born very preterm or with very low birth weight

    Get PDF
    BACKGROUND: Improved survival due to advances in neonatal care has brought issues such as postnatal growth and development more to the focus of our attention. Most studies report stunting in children born very preterm and/or small for gestational age. In this article we study the growth pattern of these children and aim to identify factors associated with postnatal catch-up growth. METHODS: 1338 children born with a gestational age <32 weeks and/or a birth weight of <1500 grams were followed during a Dutch nationwide prospective study (POPS). Subgroups were classified as appropriate for gestational age and <32 weeks (AGA) or small for gestational age (<32 wks SGA and ≥32 wks SGA). Data were collected at different intervals from birth until 10 years for the 962 survivors and compared to reference values. The correlation between several factors and growth was analysed. RESULTS: At 10 years the AGA children had attained normal height, whereas the SGA group demonstrated stunting, even after correction for target height (AGA: 0.0 SDS; SGA <32 wks: -0.29SDS and ≥32 wks: -0.13SDS). Catch-up growth was especially seen in the SGA children with a fast initial weight gain. BMI was approximately 1 SD below the population reference mean. CONCLUSION: At 10 years of age, children born very preterm AGA show no stunting. However, many children born SGA, especially the very preterm, show persistent stunting. Early weight gain seems an important prognostic factor in predicting childhood growth

    Salivary testosterone levels in preadolescent children

    Get PDF
    BACKGROUND: Saliva reflects the plasma free fraction of testosterone which is biologically active, and available for uptake by tissues. Testosterone concentration in saliva, though differing slightly from the concentration of unbound testosterone in serum, is in good correlation with the latter, indicating that salivary testosterone provides a reliable method for determination of serum free testosterone. The study aimed to investigate salivary testosterone levels and their changes in preadolescent children and to study sexual dimorphism. METHODS: Testosterone levels were determined in 203 healthy preadolescent children (77 girls and 126 boys) from saliva samples by radioimmunoassay. Sampling was performed once a year with respect to circadian and seasonal fluctuations of testosterone. Data were statistically analyzed by Statgraphic software. RESULTS: Mean salivary testosterone concentrations (± SD) were 0.038 ± 0.012 nmol/L and 0.046 ± 0.026 nmol/L for girls and boys, with the medians 0.035 nmol/L and 0.041 nmol/L, respectively. Statistical analysis did not prove changes in salivary testosterone concentrations in the preadolescent period of life, with an exception of the insignificant fall at the age of 7 years, and an insignificant rise at the age of 9 years in girls. CONCLUSIONS: Generally it can be concluded that salivary testosterone levels in our prepubertal subjects remained stable. There was no significant increase of salivary testosterone levels from the age of 6 until the age of 9 in both sexes. Sexual dimorphism in salivary testosterone levels was proved with significantly higher (p = 0.009) salivary testosterone levels in boys than in girls

    Growth in Children with Cerebral Palsy during five years after Selective Dorsal Rhizotomy: a practice-based study

    Get PDF
    Background: Overweight is reported as a side effect of SDR. The aims were to study the development of weight, height and body mass index (BMI) during five years after SDR. Methods: This prospective, longitudinal and practice-based study included all 56 children with CP spastic diplegia undergoing SDR from the start in March 1993 to April 2003 in our hospital. The preoperative Gross Motor Function Classification System (GMFCS) levels were I-II in 17, III in 15, IV-V in 24 children. Median age at SDR was 4.3 years (range 2.4-7.4 years). Weight and height/recumbent length were measured. Swedish growth charts for typically developing children generated weight, height and BMI z-scores for age and gender. Results: The preoperative median z-scores were for height-1.92 and for body mass index (BMI)-0.22. Five years later, the median BMI z-score was increased by + 0.57 (p + 2 SD) increased (p < 0.05). Baseline BMI and age at the start of follow-up influenced the BMI change during the five years (p < 0.001 and p < 0.05 respectively). The individual growth was highly variable, but a tendency towards increasing stunting with age was seen in severe gross motor dysfunction (GMFCS levels IV-V) and the opposite, a slight catch-up of height in children with walking ability (GMFCS levels I-III). Conclusions: These are the first available subtype-and GMFCS-specific longitudinal growth data for children with CP spastic diplegia. Their growth potential according to these data should be regarded as a minimum, as some children were undernourished. It is unknown whether the spasticity reduction through SDR increased the weight gain velocity, or if the relative weight increase was part of the general "obesity epidemic". For some children the weight increase was highly desirable. In others, it resulted in overweight and obesity with risk of negative health effects. Weight and height should be monitored to enable early prevention of weight aberrations also causing problems with mobility, activity and participation

    Twenty-four hours secretion pattern of serum estradiol in healthy prepubertal and pubertal boys as determined by a validated ultra-sensitive extraction RIA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of estrogens in male physiology has become evident. However, clinically useful normative data for estradiol secretion in boys has not previously been established due to the insensitivity of current methods used in clinical routine. By use of a validated ultra-sensitive extraction RIA, our aim was to establish normative data from a group consisting of healthy boys in prepuberty and during pubertal development.</p> <p>Methods</p> <p>Sixty-two 24-hours serum profiles (6 samples/24 hours) were obtained from 44 healthy boys (ages; 7.2–18.6 years) during their pubertal development, classified into five stages: prepuberty (testis, 1–2 mL), early (testis, 3–6 mL), mid (testis, 8–12 mL), late-1 (testis,15–25 mL, not reached final height) and late-2 (testis,15–25 mL, reached final height). Serum estradiol was determined by an ultra- sensitive extraction radioimmunoassay with detection limit 4 pmol/L and functional sensitivity 6 pmol/L.</p> <p>Results</p> <p>Mean estradiol concentrations during 24-hours secretion increased from prepuberty (median: <4 (5–95 percentiles: <4 – 7) pmol/L) to early puberty (6 (<4 – 12 pmol/L) but then remained relatively constant until a marked increase between mid-puberty (8 (4 – 17) pmol/L) and late-1 (21 (12 – 37) pmol/L) puberty, followed by a slower increase until late-2 puberty (32 (20 – 47) pmol/L). The diurnal rhythm of serum estradiol was non-measurable in pre- and early puberty, but discerned in mid-puberty, and become evident in late pubertal stages with peak values at 0600 to 1000 h.</p> <p>Conclusion</p> <p>With the use of an ultra-sensitive extraction RIA, we have provided clinically useful normative data for estradiol secretion in boys.</p
    corecore