505 research outputs found

    Wrapping Transition and Wrapping-Mediated Interactions for Discrete Binding along an Elastic Filament: An Exact Solution

    Get PDF
    The wrapping equilibria of one and two adsorbing cylinders are studied along a semi-flexible filament (polymer) due to the interplay between elastic rigidity and short-range adhesive energy between the cylinder and the filament. We show that statistical mechanics of the system can be solved exactly using a path integral formalism which gives access to the full effect of thermal fluctuations, going thus beyond the usual Gaussian approximations which take into account only the contributions from the minimal energy configuration and small fluctuations about this minimal energy solution. We obtain the free energy of the wrapping-unwrapping transition of the filament around the cylinders as well as the effective interaction between two wrapped cylinders due to thermal fluctuations of the elastic filament. A change of entropy due to wrapping of the filament around the adsorbing cylinders as they move closer together is identified as an additional source of interactions between them. Such entropic wrapping effects should be distinguished from the usual entropic configuration effects in semi-flexible polymers. Our results may be applicable to the problem of adsorption of proteins as well as synthetic nano-particles on semi-flexible polymers such as DNA.Comment: 24 pages, 12 figure

    Submm/mm Galaxy Counterpart Identification Using a Characteristic Density Distribution

    Full text link
    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer IRAC colors as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and SMA-confirmed counterparts to AzTEC sources across three fields (GOODS-N, GOODS-S, and COSMOS), we develop a non-parametric IRAC color-color characteristic density distribution (CDD), which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around SMGs and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beamsize (~18"), this technique identifies ~85 per cent of SMG counterparts. For much larger beamsizes (>30"), we report identification rates of 33-49 per cent. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the LMT and SCUBA-2 on JCMT.Comment: 30 pages, 9 figures, 5 tables. Accepted for publication in MNRA

    Mechanochemical action of the dynamin protein

    Full text link
    Dynamin is a ubiquitous GTPase that tubulates lipid bilayers and is implicated in many membrane severing processes in eukaryotic cells. Setting the grounds for a better understanding of this biological function, we develop a generalized hydrodynamics description of the conformational change of large dynamin-membrane tubes taking into account GTP consumption as a free energy source. On observable time scales, dissipation is dominated by an effective dynamin/membrane friction and the deformation field of the tube has a simple diffusive behavior, which could be tested experimentally. A more involved, semi-microscopic model yields complete predictions for the dynamics of the tube and possibly accounts for contradictory experimental results concerning its change of conformation as well as for plectonemic supercoiling.Comment: 17 pages, 4 figures; typos corrected, reference adde

    Estimation of colorectal adenoma recurrence with dependent censoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to early colonoscopy for some participants, interval-censored observations can be introduced into the data of a colorectal polyp prevention trial. The censoring could be dependent of risk of recurrence if the reasons of having early colonoscopy are associated with recurrence. This can complicate estimation of the recurrence rate.</p> <p>Methods</p> <p>We propose to use midpoint imputation to convert interval-censored data problems to right censored data problems. To adjust for potential dependent censoring, we use information from auxiliary variables to define risk groups to perform the weighted Kaplan-Meier estimation to the midpoint imputed data. The risk groups are defined using two risk scores derived from two working proportional hazards models with the auxiliary variables as the covariates. One is for the recurrence time and the other is for the censoring time. The method described here is explored by simulation and illustrated with an example from a colorectal polyp prevention trial.</p> <p>Results</p> <p>We first show that midpoint imputation under an assumption of independent censoring will produce an unbiased estimate of recurrence rate at the end of the trial, which is often the main interest of a colorectal polyp prevention trial, and then show in simulations that the weighted Kaplan-Meier method using the information from auxiliary variables based on the midpoint imputed data can improve efficiency in a situation with independent censoring and reduce bias in a situation with dependent censoring compared to the conventional methods, while estimating the recurrence rate at the end of the trial.</p> <p>Conclusion</p> <p>The research in this paper uses midpoint imputation to handle interval-censored observations and then uses the information from auxiliary variables to adjust for dependent censoring by incorporating them into the weighted Kaplan-Meier estimation. This approach can handle a situation with multiple auxiliary variables by deriving two risk scores from two working PH models. Although the idea of this approach might appear simple, the results do show that the weighted Kaplan-Meier approach can gain efficiency and reduce bias due to dependent censoring.</p

    Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size

    Full text link
    We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork, that are such that the meshwork's energy is a function Fel[Aξ]F_\mathrm{el}[A_\xi] \textit{not} of the real microscopic membrane area AA, but of a \textit{smoothed} membrane's area AξA_\xi, which corresponds to the area of the membrane coarse-grained at the mesh size ξ\xi. We show that the meshwork modifies the membrane tension σ\sigma both below and above the scale ξ\xi, inducing a tension-jump Δσ=dFel/dAξ\Delta\sigma=dF_\mathrm{el}/dA_\xi. The predictions of our model account for the fluctuation spectrum of red blood cells membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane area. We also predict an observable tension jump for membranes decorated with polymer "brushes"

    Gel-Electrophoresis and Diffusion of Ring-Shaped DNA

    Full text link
    A model for the motion of ring-shaped DNA in a gel is introduced and studied by numerical simulations and a mean-field approximation. The ring motion is mediated by finger-shaped loops (hernias) that move in an amoeba-like fashion around the gel obstructions. This constitutes an extension of previous reptation tube treatments. It is shown that tension is essential for describing the dynamics in the presence of hernias. It is included in the model as long range interactions over stretched DNA regions. The mobility of ring-shaped DNA is found to saturate much as in the well-studied case of linear DNA. Experiments in polymer gels, however, show that the mobility drops exponentially with the DNA ring size. This is commonly attributed to dangling-ends in the gel that can impale the ring. The predictions of the present model are expected to apply to artificial 2D obstacle arrays (W.D. Volkmuth, R.H. Austin, Nature 358,600 (1992)) which have no dangling-ends. In the zero-field case an exact solution of the model steady-state is obtained, and quantities such as the average ring size are calculated. An approximate treatment of the ring dynamics is given, and the diffusion coefficient is derived. The model is also discussed in the context of spontaneous symmetry breaking in one dimension.Comment: 8 figures, LaTeX, Phys. Rev. E - in pres

    The Role of Hospitalists in the Acute Care of Stroke Patients

    Get PDF
    Stroke care has become progressively more complicated with advances in therapies necessitating timely intervention. There are multiple potential providers of stroke care, which traditionally has been the province of general neurologists and primary care physicians. These new players, be they vascular neurologists, neurohospitalists, internal medicine hospitalists, or neurocritical care physicians, at the bedside or at a distance, are poised to make a significant impact on our care of stroke patients. The collaborative model of care may be or become the most prevalent as physicians apply their distinct skill sets to the complex care of inpatients with cerebrovascular disease
    • …
    corecore