4,274 research outputs found
Non-equilibrium mechanics and dynamics of motor activated gels
The mechanics of cells is strongly affected by molecular motors that generate
forces in the cellular cytoskeleton. We develop a model for cytoskeletal
networks driven out of equilibrium by molecular motors exerting transient
contractile stresses. Using this model we show how motor activity can
dramatically increase the network's bulk elastic moduli. We also show how motor
binding kinetics naturally leads to enhanced low-frequency stress fluctuations
that result in non-equilibrium diffusive motion within an elastic network, as
seen in recent \emph{in vitro} and \emph{in vivo} experiments.Comment: 21 pages, 8 figure
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Nematic and Polar order in Active Filament Solutions
Using a microscopic model of interacting polar biofilaments and motor
proteins, we characterize the phase diagram of both homogeneous and
inhomogeneous states in terms of experimental parameters. The polarity of motor
clusters is key in determining the organization of the filaments in homogeneous
isotropic, polarized and nematic states, while motor-induced bundling yields
spatially inhomogeneous structures.Comment: 4 pages. 3 figure
Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models
Chemical reactions inside cells occur in compartment volumes in the range of
atto- to femtolitres. Physiological concentrations realized in such small
volumes imply low copy numbers of interacting molecules with the consequence of
considerable fluctuations in the concentrations. In contrast, rate equation
models are based on the implicit assumption of infinitely large numbers of
interacting molecules, or equivalently, that reactions occur in infinite
volumes at constant macroscopic concentrations. In this article we compute the
finite-volume corrections (or equivalently the finite copy number corrections)
to the solutions of the rate equations for chemical reaction networks composed
of arbitrarily large numbers of enzyme-catalyzed reactions which are confined
inside a small sub-cellular compartment. This is achieved by applying a
mesoscopic version of the quasi-steady state assumption to the exact
Fokker-Planck equation associated with the Poisson Representation of the
chemical master equation. The procedure yields impressively simple and compact
expressions for the finite-volume corrections. We prove that the predictions of
the rate equations will always underestimate the actual steady-state substrate
concentrations for an enzyme-reaction network confined in a small volume. In
particular we show that the finite-volume corrections increase with decreasing
sub-cellular volume, decreasing Michaelis-Menten constants and increasing
enzyme saturation. The magnitude of the corrections depends sensitively on the
topology of the network. The predictions of the theory are shown to be in
excellent agreement with stochastic simulations for two types of networks
typically associated with protein methylation and metabolism.Comment: 13 pages, 4 figures; published in The Journal of Chemical Physic
Dry and wet interfaces: Influence of solvent particles on molecular recognition
We present a coarse-grained lattice model to study the influence of water on
the recognition process of two rigid proteins. The basic model is formulated in
terms of the hydrophobic effect. We then investigate several modifications of
our basic model showing that the selectivity of the recognition process can be
enhanced by considering the explicit influence of single solvent particles.
When the number of cavities at the interface of a protein-protein complex is
fixed as an intrinsic geometric constraint, there typically exists a
characteristic fraction that should be filled with water molecules such that
the selectivity exhibits a maximum. In addition the optimum fraction depends on
the hydrophobicity of the interface so that one has to distinguish between dry
and wet interfaces.Comment: 11 pages, 7 figure
The mechanical response of semiflexible networks to localized perturbations
Previous research on semiflexible polymers including cytoskeletal networks in
cells has suggested the existence of distinct regimes of elastic response, in
which the strain field is either uniform (affine) or non-uniform (non-affine)
under external stress. Associated with these regimes, it has been further
suggested that a new fundamental length scale emerges, which characterizes the
scale for the crossover from non-affine to affine deformations. Here, we extend
these studies by probing the response to localized forces and force dipoles. We
show that the previously identified nonaffinity length [D.A. Head et al. PRE
68, 061907 (2003).] controls the mesoscopic response to point forces and the
crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to
clarify the crossover to continuum elasticity and the role of finite-size
effect
Lateral migration of a 2D vesicle in unbounded Poiseuille flow
The migration of a suspended vesicle in an unbounded Poiseuille flow is
investigated numerically in the low Reynolds number limit. We consider the
situation without viscosity contrast between the interior of the vesicle and
the exterior. Using the boundary integral method we solve the corresponding
hydrodynamic flow equations and track explicitly the vesicle dynamics in two
dimensions. We find that the interplay between the nonlinear character of the
Poiseuille flow and the vesicle deformation causes a cross-streamline migration
of vesicles towards the center of the Poiseuille flow. This is in a marked
contrast with a result [L.G. Leal, Ann. Rev. Fluid Mech. 12,
435(1980)]according to which the droplet moves away from the center (provided
there is no viscosity contrast between the internal and the external fluids).
The migration velocity is found to increase with the local capillary number
(defined by the time scale of the vesicle relaxation towards its equilibrium
shape times the local shear rate), but reaches a plateau above a certain value
of the capillary number. This plateau value increases with the curvature of the
parabolic flow profile. We present scaling laws for the migration velocity.Comment: 11 pages with 4 figure
Recommended from our members
Controlled release nanoparticulate matter delivery system
A controlled release nanoparticulate matter delivery system includes a plurality of thermoresponsive modules containing a respective nanoparticulate matter. Each thermoresponsive module is selectively operable in at least one of a heating mode that releases the nanoparticulate matter and a cooling mode that inhibits release of the nanoparticulate matter. A control module is in electrical communication with the plurality of thermoresponsive modules. The control module is configured to determine a temperature of each thermoresponsive module and to select the at least one heating mode and cooling mode based on the temperature. The heating and cooling mode may be selected in response to a desired dosing profile and/or a biometric condition.Board of Regents, University of Texas Syste
Exons, introns and DNA thermodynamics
The genes of eukaryotes are characterized by protein coding fragments, the
exons, interrupted by introns, i.e. stretches of DNA which do not carry any
useful information for the protein synthesis. We have analyzed the melting
behavior of randomly selected human cDNA sequences obtained from the genomic
DNA by removing all introns. A clear correspondence is observed between exons
and melting domains. This finding may provide new insights in the physical
mechanisms underlying the evolution of genes.Comment: 4 pages, 8 figures - Final version as published. See also Phys. Rev.
Focus 15, story 1
Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles
We examine the mechanism of bundling of cytoskeletal actin filaments by two
representative bundling proteins, fascin and espin. Small-angle X-ray studies
show that increased binding from linkers drives a systematic \textit{overtwist}
of actin filaments from their native state, which occurs in a linker-dependent
fashion. Fascin bundles actin into a continuous spectrum of intermediate twist
states, while espin only allows for untwisted actin filaments and
fully-overtwisted bundles. Based on a coarse-grained, statistical model of
protein binding, we show that the interplay between binding geometry and the
intrinsic \textit{flexibility} of linkers mediates cooperative binding in the
bundle. We attribute the respective continuous/discontinous bundling mechanisms
of fascin/espin to differences in the stiffness of linker bonds themselves.Comment: 5 pages, 3 figures, figure file has been corrected in v
- …