4 research outputs found

    Processing and characterization of bio-polyester reactive blends: From thermoplastic blends to cross-linked networks

    Get PDF
    The addition of ethyl ester L-lysine tri-isocyanate (LTI) to mixtures of poly(lactide)/poly(ε-caprolactone) has been reported to improve the compatibility of the resulting blends. In the present work, we have investigated the influence of adding increasing amounts of LTI to the mechanical and thermal properties of the blends. Torque trends, plate-plate rheology, differential scanning calorimetry, scanning electron microscopy, and uniaxial tensile characterization were conducted on samples with amounts of LTI comprised between 0.5 and 5 phr. Results suggests that by increasing the content of LTI over 0.5 phr the mechanical and thermal behaviour of the blends tend to change from that of a thermoplastic to that of a cross-linked, rubber-like material with outstanding mechanical properties. Morphological investigations show a very fine, well-dispersed morphology in all cases. Numerical models have been applied to rheological experiments to identify processes and phases in the studied blends, further supporting the hypothesis of a cross-linked phase formed for blends containing more than 0.5 phr of LTI

    Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications

    Get PDF
    We report in this paper the effects of Ethyl Ester L-Lysine Triisocyanate (LTI) on the physical-mechanical properties of Poly(lactide)/Poly(ε-caprolactone) (PLA/PCL) polyesters blends. The PLA/PCL ratios considered were 20/80, 50/50 and 80/20 (wt/wt %) and LTI was added in amounts of 0.0-0.5-1.0 phr. PLA and PCL reacted with LTI during processing in a Brabender twin screw internal mixer to produce block copolymers in-situ. The resulting blends have been characterized by torque measurements, uniaxial tensile tests, Differential Scanning Calorimeter, contact angle measurements with a Phosphate Buffered Saline (PBS) solution, ATR analysis and morphological SEM observations. Experimental results highlighted how LTI enhanced interaction and dispersion of the two components, resulting into a synergic effect in mechanical properties. Mechanical and physical properties can be tailored by changing the blend composition. The most noticeable trend was an increase in ductility of the mixed polymers. Besides, LTI decreased blend’s wet ability in PBS and lowered the starting of crystalline phase formation for both polymers, confirming an interaction among them. These reactive blends could find use as biomedical materials, e.g. absorbable suture threads or scaffolds for cellular growth

    Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications

    Get PDF
    This paper was accepted for publication in the journal Journal of the Mechanical Behavior of Biomedical Materials and the definitive published version is available at http://dx.doi.org/10.1016/j.jmbbm.2017.02.018We report in this paper the effects of Ethyl Ester L-Lysine Triisocyanate (LTI) on the physical-mechanical properties of Poly(lactide)/Poly(ε-caprolactone) (PLA/PCL) polyesters blends. The PLA/PCL ratios considered were 20/80, 50/50 and 80/20 (wt/wt %) and LTI was added in amounts of 0.0-0.5-1.0 phr. PLA and PCL reacted with LTI during processing in a Brabender twin screw internal mixer to produce block copolymers in-situ. The resulting blends have been characterized by torque measurements, uniaxial tensile tests, Differential Scanning Calorimeter, contact angle measurements with a Phosphate Buffered Saline (PBS) solution, ATR analysis and morphological SEM observations. Experimental results highlighted how LTI enhanced interaction and dispersion of the two components, resulting into a synergic effect in mechanical properties. Mechanical and physical properties can be tailored by changing the blend composition. The most noticeable trend was an increase in ductility of the mixed polymers. Besides, LTI decreased blend’s wet ability in PBS and lowered the starting of crystalline phase formation for both polymers, confirming an interaction among them. These reactive blends could find use as biomedical materials, e.g. absorbable suture threads or scaffolds for cellular growth

    Threads Made with Blended Biopolymers: Mechanical, Physical and Biological Features

    No full text
    Poly (Lactic Acid), PLA, and Poly (ε-CaproLactone), PCL, compatibilized with Ethyl Ester l-Lysine Triisocyanate (LTI) can be employed as biomaterials. We mixed PLA with PCL and LTI in a twin extruder and by a melt spinning process obtained threads with an average diameter of about 0.3 mm. In order to study the possible application of these threads, mechanical tensile (with the calorimetric and morphological investigations) and biological tests were performed. The results highlighted these biopolymers as promising materials for sutures since they can be rigid and elastic (especially by increasing the PCL amount in the blend), and they are bioactive, able to inhibit bacterial growth. This paper represents a starting point to optimize the blend composition for biomedical suture application
    corecore