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Abstract 
 
We report in this paper the effects of Ethyl Ester L-Lysine Triisocyanate (LTI) on the physical-

mechanical properties of Poly(lactide)/Poly(ε-caprolactone) (PLA/PCL) polyesters blends. The 

PLA/PCL ratios considered were 20/80, 50/50 and 80/20 (wt/wt %) and LTI was added in 

amounts of 0.0-0.5-1.0 phr. PLA and PCL reacted with LTI during processing in a Brabender 

twin screw internal mixer to produce block copolymers in-situ. The resulting blends have been 

characterized by torque measurements, uniaxial tensile tests, Differential Scanning Calorimeter, 

contact angle measurements with a Phosphate Buffered Saline (PBS) solution, ATR analysis and 

morphological SEM observations. Experimental results highlighted how LTI enhanced 

interaction and dispersion of the two components, resulting into a synergic effect in mechanical 

properties. Mechanical and physical properties can be tailored by changing the blend 

composition. The most noticeable trend was an increase in ductility of the mixed polymers. 

Besides, LTI decreased blend’s wet ability in PBS and lowered the starting of crystalline phase 

formation for both polymers, confirming an interaction among them. These reactive blends could 

find use as biomedical materials, e.g. absorbable suture threads or scaffolds for cellular growth. 
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1. INTRODUCTION:  

Many types of bio-polyesters have been widely used in the last years, for the growing quest of 

sustainable materials and for various biological applications, in which they demonstrate to be 

very useful. One example is their use as absorbable sutures threads or scaffolds for cellular 

growth of various geometries [1-3]. 

Among this class of thermoplastic polymers, Poly (lactide) (PLA) and Poly (ε- caprolactone ) 

(PCL) are two of the most used polymers, well known for their bio-compatibility, bio-

degradability, and environmental sustainability (especially for PLA which can be obtained from 

renewable resources). 

 PLA, when not quenched, is a brittle polymer at room temperature, due to its glass transition 

being about 60°C, and the situation worsen with time due to physical aging, but it shows high 

tensile strength if compared to other similar polyesters [4]. 

PCL, instead, has longer portions of CH2 units between the ester linkages, resulting in a more 

flexible structure and a lower glass transition temperature (about -60°C). This results in a rubber-

like thermoplastic material with one of the highest ductility of its class [3,4]. 

The complementary characteristics of the two polyesters have given rise to a plethora of 

studies to obtain blends of PLA and PCL that could take advantage of their best properties. For 

applications, it would be highly desirable to obtain high yield stress and maximum stress in 

tensile conditions, moderate Young’s modulus and high ductility [5,6]. 

However, the main problem to overcome is the very poor miscibility of PLA and PCL in the 

molten state, due to the high interfacial energy between the two macromolecules, that results into 

a “coalescence effect” and a very low dispersed morphology [1,2]. 

It has been proved that the dispersion is also strictly related on the processing method, and 

some physical blends with good dispersion of the PCL phase in the PLA matrix were obtained by 

injection molding [7]. 

 Another possible mean to achieve good blends is the use of compatibilizers, such as  

“triblock” or “diblock” copolymers of the two polyesters, but this may require rather costly 

synthesis to achieve the right balance of the blocks for a given blend. [1,8]. 

A further method with a lower overall cost and high effectiveness is the “reactive mixing”. It 

consists in adding specific chemical agents, which can generate new chemical species during the 

thermo-mechanical processing of the materials. The chemical agents added to the blends can 
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react with both polymers, creating ‘in-situ’ block copolymers that can act as phase-

compatibilizer, sensibly lowering the interfacial energy between the two polymeric components 

and favoring their blending [3]. 

Other authors had already employed essential amino-acids derivates such as Ethyl Ester L-

Lysine Triisocyanate (LTI) as reactive agents, to bring compatibilization between the two 

aliphatic polyesters. All of these studies demonstrate how, even at low amounts of LTI, the 

toughness of the blends, can be sensibly increased [4,9-10]. They have used different LTI 

amounts, generally 0,15-0,3-0,5 phr, but also higher amounts, such as 1 phr, and 2 phr, which, to 

our knowledge, is the maximum amount of this reactive agent used till now. The aim of their 

studies was the toughening of PLA and the improvement of both impact and bending strength, 

for generic applications.  

The biocompatibility of lactide-caprolactone structures obtained by reaction with LTI has 

been confirmed by other studies on the characterization and synthesis of co-polyester-urethane 

networks for medical purpose and application [11-13]. In order to have an optimal performance 

of these materials, it’s very important that also their degradation products are nontoxic and 

biocompatible. Robson et al. [14] have observed that the ultimate degradation products of 

bioabsorbable PLA-urethane based composites ( such as L-lysine and lactic acid) are nontoxic. 

Schreader at al. [15] highlighted the wide range of in-vivo applications of polyurethane based 

polymers (for scaffolds, hard tissue replacement, and biocompatible bone adhesive); both the in-

vitro and in-vivo tests gave good results in terms of normal cells growth and immunological 

response. Zhang et al. [16] have suggested as well that a lysine diisocyanate based polymer is 

biodegradable and biocompatible, so that it can have biomedical applications.  

Lactide-caprolactone structures could be employed in orthopedics field. One of the most 

common and most relevant problem in orthopedics is represented by infections, and consequent 

bio-film formation on the part, which can contribute to severe septic phenomena. A material 

showing proper mechanical characteristics, but able to biodegrade, could then be used as bone-

implant and drug-delivery system (for instance an appropriate antibiotic delivery) without these 

issues.  

Furthermore, to have an appropriate alternative to metals that is able to biodegrade, could 

avoid further surgeries targeted to remove the implant, which in some cases can be a source of 

concern for the patient. For those reasons a blend of bio-polyesters with proper mechanical 
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characteristics and long term dissolving feature, could prove very useful for this application. 

Improved mechanical properties in terms of strength and of stiffness, can be obtained by cross-

linking with a polyfunctional compatibilizing agent, such as the LTI, and/or with a filler 

composed by nanoparticles like hydroxyapatite. A grade of entirely laevogyrate Poly(lactide) 

(PLLA) could also be used since its elastic modulus value is in the range of 4GPa [17]. 

The change in mechanical properties of polymer blends and polymer composites is commonly 

analyzed by bulk analyses, such as static tensile mechanical tests. However, it can be also 

detected by local surface measurements techniques, such as the nanoindentation one [18]. For 

example Pillin at al. [19] highlighted that nanoindentation can be more accurate to detect changes 

in mechanical properties than macroscopical tests because during the degradation of PLA, low 

molecular weight chains diffuse toward interfaces and are preferentially located at the surfaces 

probed by this technique. 

In the literature however, at present there is a lack of a deep physical and mechanical 

characterization of these reactive blends as a function of their composition. Generally, 

mechanical investigation on bio-polymers, pure or in blend, is very important in order to know 

key mechanical characteristics such as yield strength, modulus, toughness, and fracture 

properties [9, 20-21]. For these reason, we undertook a systematic study of the PLA/PCL blends, 

pure and with different amounts of LTI added, in various compositions. We have studied torque 

values on the mixer screws during mixing, mechanical tensile properties, thermal behavior, and 

wet ability in a fluid simulating the animal tissues conditions (Phosphate Buffered Saline 

Solution or PBS). The change in chemical structure has been followed by FT-IR and the 

dispersion of the two polymeric phases has been observed by SEM microscopy. Our aim was to 

control the microstructure of these reactive blends, and hence the macroscopic features of these 

materials, by setting and tailoring their composition. The results obtained can give a better 

understanding of the physic-mechanical properties of these blends and help for their correct 

application in the biomedical field. 
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2 - MATERIALS AND METHODS 

 
2.1 Materials 
 

PLA/PCL, i.e. blends and PLA/PCL/LTI reactive blends (obtained by adding the reactive 

compatibilizing agent in various amounts), were produced from: 

-Poly(lactide) – code: PLA (solid pellets, BioFlex- 6510 supplied by FKUR(Mn = 197000 Da); 

-Poly (ε-caprolactone)-PCL (solid pellets, purchased from Sigma-Aldrich (IT) Mn = 80000 Da); 

-Ethyl Ester L-Lysine Triisocyanate- LTI (Liquid, optical purity 80, purchased from Infine 

Chemicals ltd). 

The polyesters were dried at 50°C overnight before processing; LTI was used as received. 

The Phosphate Buffered Saline solution (PBS, purchased from Sigma-Aldrich) was obtained by 

dissolving a tablet composed by phosphate salts in 200 mL of distilled water. 
 
2.2 Blends and sample preparation 
 

Materials were first mixed in an internal mixer, the Brabender Plasticorder PL200 at 180 °C, 25 

rpm for 15 minutes; the reactive blends were obtained by adding LTI 5 minutes after the mixing 

started in the Brabender, following the conditions described by Tuba et al. [9]. Those processing 

parameters represent the less demanding but still effective conditions described in the literature 

to obtain PLA-based reactive blends, since its well-known sensitivity to thermo-mechanical 

degradation. 

All solid blends were compression molded at 180°C and 100 bars for 10 minutes by a hot press 

inside a stainless steel mold of 12cmx 12cm dimensions, 1 mm thickness (Campana s.r.l.), with 

teflon releasing films (126 microns thickness) supplied by P.A.T.I. srl, and then cooled by a 

water cooling system. The tensile test samples were obtained by a Ray-Ran cutter in conformity 

with ASTM D-638 standard for sample shapes. 

Blends of various composition of polyesters (wt. %) and various amounts of LTI in phr (per 

hundred resin, 0.0 phr or un-compatibilized, 0.5 phr and 1.0 phr) were produced and the 

components identified by a code containing “A” for PLA , “C” for PCL , and “T” for LTI . Each 

letter is followed by a number, which indicates the percentage of the polymer and the LTI phr 

amount. A100 and C100 samples are pure PLA and pure PCL; they have been processed in the 
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Brabender mixer in the same conditions of the blends. All the blends produced and studied are 

listed and codified in Table 1. 

 

 

Table I – Blends code 

 
 

Code PLA 
(wt.%) 

PCL 
(wt.%) 

LTI 
(phr) 

Torque 
 at 15 minutes 

(N*m) 
A100 100 (pure) 0 - 9.02 
C100 0 100 (pure) - 6.54 

     

A80C20 80 20 0 7.56 
A80C20T05 80 20 0,5 12.79 
A80C20T1 80 20 1 20.94 

A50C50 50 50 0 7.44 
A50C50T05 50 50 0,5 10.44 
A50C50T1 50 50 1 14.18 

A20C80 20 80 0 6.74 
A20C80T05 20 80 0,5 8.94 
A20C80T1 20 80 1 10.26 

 
 
2.3 Characterization and testing 
 

Torque measurement during mixing is an index of the changing viscosity of the blends in the 

molten state; it was read and recorded by the Torque transducer of the Brabender Plasticorder 

PL2000, interfaced with  the PC Brabender software. It provided torque values expressed in N*m 

every 30 s, for all the 15 min duration of the mixing process.  

Uniaxial tensile tests were conducted by Lloyd LR10K universal testing machine, following the 

standard ASTM D638-10 with type V specimens and crosshead speed of testing of 10 mm/min. 

This was found to be the ideal speed of testing for all the blends made, considering the great 

difference in ductility between the two pure polyesters. The mechanical parameters investigated 

were: Young modulus (E, MPa), stress at yielding (σy, MPa) stress at break (σb,MPa) and 

maximum stress (σmax, MPa), elongation at yielding (εy, %) and at break (εb, %), and the work at 

break (Wb, J).  
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Wet ability measurements were obtained using the “Sessile drop method” using a prototype of 

the “Polymer laboratory” at University of Messina. Drops of 5μLof the Phosphate buffered saline 

(PBS) solution prepared in advance of the testing were deposited on the sample surface. Each 

drop image was measured by means of the software Image J [22]. 

FT-IR and ATR spectroscopic analyses were conducted using a Shimadzu FT-IR, on films of 

about 50 microns in thickness. 64 scans from 600 to 4000 cm-1 were acquired with a resolution of 

4 cm-1. 

Thermal analyses were conducted by means of Differential Scanning Calorimetry using a TA 

Instruments DSC Q100, from room temperature to 200°C, with a heating rate of 10 °C/min and 

water cooling. The crystalline degree of PCL, χ, was calculated using the following equation: 

 

                                          𝜒𝜒 =  
∆𝐻𝐻𝑚𝑚
𝜑𝜑 ∙ ∆𝐻𝐻0

         (1)                                     

 

where ΔHm [J/g] is melting enthalpy, ϕ is the weight fraction of the studied material and ΔHo 

[J/g] is the theoretical enthalpy of fusion of a polymer crystal of infinite extension [9]. 

Initial crystalline fraction of PLA, χi, was calculated using the following equation: 

 

𝜒𝜒𝑖𝑖 =  
∆𝐻𝐻𝑚𝑚 − ∆𝐻𝐻𝑐𝑐𝑐𝑐
𝜑𝜑 ∙ ∆𝐻𝐻0

     (2) 

  

where ΔHcc [J/g] is the “cold-crystallization” enthalpy of PLA,. Cold crystallization is due to the 

well-known phenomenon of PLA re-organization in more ordered regions induced by the thermal 

heating of DSC test [9]. For this reason equation 3 has been used to calculate the crystalline 

degree of the cold crystallized PLA (χcc) :  

𝜒𝜒𝑐𝑐𝑐𝑐 =  ∆𝐻𝐻𝑐𝑐𝑐𝑐
𝜑𝜑∙∆𝐻𝐻0

        (3) 

 
 
Finally, Scanning Electron Microscopy (SEM)  images were obtained using a FEI Quanta FEG 

450 microscope operating with an accelerating voltage of 5 kV in low vacuum mode and placing 

the samples on aluminum holders by means of a graphitic adhesive. 
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3 - RESULTS AND DISCUSSION 
 
3.1- Torque measurements during the blend mixing 

 

Torque values during mixing are strictly related to the melt viscosity of thermoplastic materials; 

a change in these values during time suggests modifications in the structure of the polymers, for 

instance in the molecular weight or, generally, in the macromolecular structure.  

 

In figure 1,a torque value vs mixing time of all the un-compatibilized blends is shown. Torque 

values are low and constant for “rich in PCL” blends (C100, A20C80 and A50C50), around 6-7 

N·m); in pure PLA sample(A100) it became the highest one (9.02 N·m) with a rapid decrease 

during time. A similar but less rapid behavior is shown in the “rich in PLA” blend (A80C20). So, 

two different trends are evident, due to the higher thermo-mechanical degradation resistance of 

PCL with respect to PLA. Thus PLA confirmed to be susceptible to thermo-mechanical 

degradation, most likely due to degradation in its molecular weight with time. In figure 1,b 

torque values of the A50C50 blend before and after the addition of different amount of 

compatibilizer (LTI) are plotted. In this case, the presence of compatibilizer induces a great 

increment of all torque values (as indicated by the arrow in the graph) that increases with the 

addition of higher amounts of LTI, suggesting the formation of high molecular weight 

compounds in the blend. In table I are listed the torque values after 15 minutes of processing for 

all the investigated blends. Experimental data indicate that the changes are proportional to the 

LTI amount. Similarly, the other blends (A20C80 and A80C20) show a progressive increase in 

torque values with increasing the LTI amount (see table I). The graphs, not shown for brevity, 

confirms again the formation of a higher-molecular weight component in all the blends.  
 

 
3.2- Mechanical features of the blends 

 
Table II lists the mechanical parameter values of pure materials. Pure PCL (C100) has a great 

ductility, with elongation at break values (εb) of about 1400%. Instead εb decreased of ~15 % in 

pure PLA (A100), which has higher stiffness than PCL (~ 8156 MPa and ~150 MPa, 

respectively). 
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Table II- Mechanical parameters of pure materials  

Code E  
[MPa] 

εy  
[%] 

σy  
[MPa] 

σmax  
[MPa] 

εb  
[%] 

σb  
[MPa] 

Wb 

 [J] 

PLA 
Stand. dev. 
A100 

Stand. dev. 

640 
± 63 
816  
± 76 

9,05 
± 0,9 
6,07  
± 0,5 

28,09 
± 2,13 
22,36  
± 1,74 

28,09 
± 2,13 
22,36  
± 1,74 

35,42 
± 3,1 

14,89  
± 1,2 

20,62 
± 1,83 
15,23  
± 0,89 

0,30 
± 0,03 
0,08 

 ± 0,008 

PCL 
Stand. dev. 
C100 

Stand. dev. 

155 
± 12 
154  
± 14 

19,5 
± 1,9 

19,46  
± 1,4 

10,94 
± 0,9 

14,00  
± 0,59 

42,36 
± 2,76 
43,00  
± 1,04 

1518 
± 155 
1405 

 ± 46,37 

- 

- 

39,82 
 ± 1,19 

- 

- 

10,81  
± 1,03 

 

Table II lists the mechanical tensile parameters of PLA and PCL (not processed) and processed 

in the Brabender Plasticorder (A100 and C100).PLA is susceptible to thermo-mechanical 

degradation, since it becomes even more brittle after processing. This is suggested by the  

increase in stiffness ( from ~640 MPa to ~816 MPa), the decrease in deformability ( from ~35% 

to ~15%) , in strength ( from 20 MPa to 15 MPa) and in yielding ( from 28 MPa to 22 MPa). 

Instead PCL retained its features after its processing confirming its high thermo-mechanical 

degradation resistance. 

In figure 2 the stress/strain curves of pure materials and of un-compatibilized blends are 

plotted in order to observe their difference in tensile behavior. In particular blends rich in PCL 

(as the A20C80 blend), exhibit a great ductility, with elongation at break values of ~850 %. 

Instead elongation at break decreases up to values of ~12% in PLA rich blend (as the A80C20 

blend). Young modulus is much higher in PLA-rich blend than in PCL one (~380 MPa and ~150 

MPa, respectively),as expected. The A50C50 blend has got intermediate properties. 
 
 
 
In table III, the mechanical parameters of each blend before and after the addition of 0.5 and 1.0 

phr of LTI are reported. The presence of 1 phr of LTI greatly improves all the properties of the 

three polyester blends, as suggested by the percentage variation of mechanical parameters 

(indicated in the table by the symbol: δ Pure-T1), calculated as difference between each parameter 

value of pure samples subtracted to the same parameter value of T1 blends. 



10 
 

These changes occur in all the blends but are particularly evident in the blend A50C50, where 

the mechanical features of the un-compatibilized blend where, as expected, the worse in the 

series due to the immiscibility of the PCL and PLA (see data in table III).  

In particular, the A50C50T1 blend exhibits significant enhancements in yield stress (of 

145%), deformation at yield (of 438%), elongation at break (of 6254%),and work of fracture (of 

28500 %).  

It should be also considered that, as LTI can react randomly with both PCL and PLA, the 

probability to form a block copolymer having at least one PCL and one PLA (the best to actually 

act as a compatibilizer) is higher in the A50C50 blend, compared to the blends with higher 

content of PCL or PLA. 

The observed improvements are due to the enhanced dispersion of one polymeric phase in the 

other one. This is well visible in figure 3 where SEM micrographs of A50C50 without and with 

LTI compatibilizer are shown. Figure 3a shows big particles, circular in shape and about 12 

microns wide; suggesting a polymeric phase separated from the other one due to the poor 

miscibility.   
 

Table III - Mechanical properties of the blends 
 

Code E  
[MPa] 

εy 

 [%] 
σy  

[MPa] 
σmax  

[MPa] 
εb  

[%] 
σb 

[MPa] 
Wb 

 [J] 

A80C20 386 ± 48 5,0 ± 0,9 12,7 ±1,1 18,07 ± 0,7 13 ± 0,9 16,9 ± 1,2 0,05 ± 0,01 
A80C20T05 467 ± 103 8,3 ± 1,3 24,1 ± 0,8 26,27 ± 1,4 285 ± 60 25,1 ± 3,2 2,65 ± 0,6 
A80C20T1 506 ± 39 8,6 ± 0,7 25,2 ± 0,7 34,07 ± 1,2 360 ± 22 33,9 ± 1,2 3,33 ± 0,2 

δ Pure-T1 [%] 31 72 98 88 2729 100 6560 
A50C50 334 ± 36 3,9 ± 0,7 7,2 ± 0,6 10 ± 0,9 10 ± 2,0 9,6 ± 0,6 0,02 ± 0,01 

A50C50T05 264 ± 47 27,1 ± 8,15 13,2 ± 1,1 21,8 ± 2,8 446 ± 81 21,6 ± 2,8 3,05 ± 0,9 

A50C50T1 370 ± 51 21,1 ± 5,57 17,6 ± 1,2 39,02 ± 2,1 646 ± 39 38,8 ± 2,1 5,72 ± 0,4 
δ Pure-T1 [%] 11 439 145 290 6255 306 28500 

A20C80 159 ± 23 20,4 ± 4,92 11,4 ± 0,6 21,76 ± 1,0 851 ± 46 21,35 ± 1,2 4,98 ± 0,4 

A20C80T05 179 ± 41 20,4 ± 2,65 12,7 ± 0,7 35,88 ± 3,5 1052 ± 94 35,53 ± 3,5 9,12 ± 1,5 

A20C80T1 211 ± 56 16,7 ± 1,97 16,4 ± 0,4 51,97 ± 2,0 1090 ± 47 51,75 ± 2,1 10,01 ± 0,9 

δ Pure-T1 [%] 33 -18 43 139 28 142 101 
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The presence of 0.5 phr (figure 3b) and 1.0 phr (figure 3c) of LTI progressively reduces the 

particles dimension that become of ~ 3 µm and 1 µm, respectively. The high dispersion is well 

visible in figure 3c that appears quite homogeneous; this time is also visible a stress preferential 

direction imposed by the spinning force generated inside the mixing chamber.  

This stress preferential direction is not visible in the first micrograph (figure 3a) and just 

outlined in the intermediate picture (figure 3b). It is interesting to note that this stress is 

completely lost after the molding step for the un-compatibilized blend, while it is retained in the 

presence of LTI.  

The blend rich in PCL (A20C80) improves in strength after addition of 1.0 phr of LTI: the σmax 

value grows of ~139% and σb value grows of ~142%. Then, the blend rich in PLA (A80C20) 

improves in ductility after 1.0 phr of LTI addition: the σy value grows of ~98% , εb grows of 

~2730% and Wb of ~6500 %.  

This suggest that the main improvement brought by the presence of LTI  in the blends, is mostly 

on ductility, for those blends that were originally brittle, and in mechanical strength for those 

blends which were originally ductile but weaker. The synergic effect observed between the very 

different properties of PLA and PCL confirms that a good dispersion and compatibility are 

reached. 

The stress strain curves, reported in Fig. 4, show the considerable improvements in ductility of 

the three blends after the addition of 1phr of reactive agent, as indicated by the arrows. 

The un-compatibilized blends are represented by a continuous line while the 1 phr 

compatibilized ones are represented by a dashed line of the same color. The formation of the co-

polyester-urethanes acts as compatibilizer and emulsifying agent, lowering the interfacial tension 

between the two polyesters (PCL and PLA).  

In figure 5 the photographs of the dog-bone samples before and after a tensile test, are reported. 

In particular we can notice the difference in color of the PCL sample (C100) that’s whiter than 

the PLA one (A100). The A50C50 blends became progressively darker (brown color) with 

increasing amount of LTI. The picture of the same samples before the tensile test highlights the 

considerable elongation at break of the PCL sample (C100) and the improved ductility of the 

A50C50 blend compatibilized with 1.0 phr of LTI, according to the results shown in the graph of 

figure 4. 
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In this research, the selected grades of investigated poly(lactide) and the poly(caprolactone) 

are chosen to have moderate stiffness, more suitable for suture applications. It is known that the 

remodeling process during wound healing at the suture sites is helped by a moderate strain field 

on the part [13]. For this reason, a PLLA grade with an Elastic Modulus in the order of GPa 

could be too rigid for sutures applications [17].  

The graphs shown in Figure 6 compare some of the properties of un-compatibilized and 

compatibilized blends, as a function of the PCL content. The values change with the composition 

of the blends. The reactive mixing that occurs after LTI adding, progressively improves all the 

mechanical properties such as the work at fracture (fig.6a), maximum stress (fig.6b), stress at 

yielding (fig.6c) and Young modulus (fig.6d), as indicated by the arrows in each graph. 

The results shown suggest that this method can be used not just for improving PLA ductility 

or PCL strength, but mostly widely to obtain materials within a large range of properties deriving 

from both the polyesters, simply by changing the blend composition.  

For example, if we consider applications  in the biomedical field, for soft tissues, we would 

require materials which show low stiffness, and high ductility. For this purpose, the formulation 

could be composed by higher PCL content and lower LTI amount. This formulation can grant a 

moderate stress field on the tissue, maintaining an appreciable tensile strength, so that these 

materials could be successfully employed as internal surgery sutures [13,23]. 

If instead higher stiffness and yield strength materials are needed, for instance in orthopedic 

applications like bone implants in forms of scaffolds for cellular growth, blends with high PLA 

and LTI content would be the most suitable materials [24]. 

 

3.3 Thermal properties 

 

Thermal analysis results are shown in figure 7a,b and given in details in tables IV and V.  

Table IV indicates melting temperature (Tm) and enthalpy (∆Hm) of PCL, cold crystallization 

temperature (Tcc) and enthalpy (∆Hcc) of PLA, in all the studied blends. The PLA fraction shows 

two phase transitions which are associated to cold crystallization (at about 104-113°C) and 

melting. The latter is composed by two components: one due to the initial crystalline order of 

PLA (at ~153°C-157°C) and the second due to cold crystallized component induced during 
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calorimetric test heating (at about 145°C-149°C). The correspondent peaks are indicated in the 

graphs reported in figure 7a. 

 

Table IV- Calorimetric DSC parameters of all the studied blends 

 

 

 

 

 

 
 

 

 

 

 

Calorimetric data highlight as the LTI presence changes the melting temperatures of both PCL 

and PLA. In particular, Tm value of PCL in all the blends decreases with increasing the LTI 

content (from about 62°C to 59°C, from about 64°C to 62°C and from about 64°C to 60°C in the 

A80C20, A50C50 and A20C80 blend, respectively). Also the correspondent ∆Hm decreases from 

~ 15 to 11.3 J/g, from ~ 39 to ~ 32 J/g and from ~ 56 to ~ 48 J/g. 

 

Table V– Crystalline degree of PLA and PCL in all the studied blends 
 

Blend 
code 

χiPLA 

(%) 
χccPLA 

(%) 
χPCL 

(%) 
A80C20 1,01 11,41 54,42 

A80C20T05 1,49 11,27 60,6 
A80C20T1 0,68 11,96 39,68 

A50C50 3,28 10,72 55,69 
A50C50T05 3,17 9,2 49,92 
A50C50T1 1,81 10,53 45,52 

A20C80 0,08 13,08 49,22 
A20C80T05 9,2 3,29 47,54 
A20C80T1 8,4 2,26 42,69 

 

 
PCL PLA 

CODE 
Tm ΔHm Tcc ΔHcc Tm ΔHm 
°C J/g °C J/g            °C                      J/g 

A80C20 62,25 15,51 104,16 12,32 147,73 155,94 13,41 
A80C20T05 62,39 17,27 107,72 12,17 148,38 156,28 13,78 
A80C20T1 59,45 11,31 113,73 12,92 149,75 153,51 13,65 

A50C50 64,02 39,68 103,61 7,24 146,65 155,74 9,45 
A50C50T05 62,83 35,57 111,05 6,21 148,31 154,37 8,35 
A50C50T1 62,08 32,43 113,05 7,11 148,88 157,14 8,33 

A20C80 64,54 56,11 105,85 3,53 145,97 154,12 3,55 
A20C80T05 63,63 54,19 107,44 0,89 147,01 153,99 3,37 
A20C80T1 60,92 48,67 111,79 0,61 146,6 156,7 2,88 
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Similarly, the two melting peaks of PLA change in all the blends with increasing the LTI content. 

For example in the A80C20 blend, the melting peaks  at ~147°C and ~156°C, became ~149°C 

and ~153°C in the A80C20T1 blend. Or similarly, in the A20C80 blend, the peaks are initially at  

~145°C and ~154°C and became ~146°C and ~157°C in the A20C80T1. Enthalpy values 

generally decreases (for example from 9.45 to 8.33 J/g, in the A50C50 blend,  and from 3.55 to 

2.88 in the A20C80 blend) while it's constant in the A80C20 blend, around 13 J/g. Due to the 

presence of two peaks for two different contributes, it's difficult to clearly interpret the peaks’ 

trend of PLA melting. They also changes in shapes, as visible in the expansion of figure 7, 

suggesting a re-organization inside the material. 

In the presence of LTI, the cold crystallized component for PLA decreases in enthalpy, while the 

melting peak increases in temperature. For example, ∆Hcc and Tcc of A20C80 blend are about 

3,5J/g, and 105°C respectively and about 0,6 J/g and 111°C in the of A20C80T1 blend. 

Calorimetric experimental data have confirmed that PCL has an higher crystalline order than 

PLA in all the studied blends, as shown in table V. In fact, the crystalline degree of PCL is 

generally within the range of ~42% (min) - 60 % (max) while the initial PLA crystalline degree 

is within the range of ~ 0.08% ( min) -9.2% (max). PLA crystalline degree improved after its 

cold crystallization up to ~ 2.26% ( min) -13.08% ( max) .  

These experimental results highlight an overall change in the polymeric blend structure induced 

by LTI presence, due to a macromolecular re-organization. This further confirm the idea that LTI 

creates grafted and/or cross linked structures which are reasonably more amorphous or 

disordered than the pure blends. In order to investigate and explain all effects induced by LTI on 

the crystallinity  of both PLA and PCL, further investigations will be performed in blends with 

LTI content higher than 1 phr. 

 
 

3.4 Wet-ability 

 

Wet ability tests indicate the kind of interactions between a solid substrate and a liquid 

substance: the lower is the contact angle between the two, the more is their interaction. This 

lowers the interfacial tension and lets an absorption of liquid in the polymeric material.  

For highly biodegradable materials, an higher interaction between fluid and material substrate 

suggests an higher degradation rate due to hydrolytic reactions, changing the material’s physical 
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properties. Generally, the contact angle values depend on various factors like the crystalline 

degree of the polymer substrate, the viscosity of the liquid, the surface features on the interface, 

and the ambient conditions for this kind of testing; their contribution can establish  liquid 

diffusion inside the solid material, and so its degradation rate  

The graph in Figure 8 shows how the increasing amount of PCL in the PLA/PCL blends 

brings an increase in contact angle regardless of the LTI amount. This is clearly related to the 

lower hydrophilic behavior of PCL (with respect to the PLA) due to its higher crystallinity, and 

to its lower amount of hydrophilic groups (the hydroxyl ones at the end of the chains and ester 

bonds in the macromolecules). Furthermore, in the same picture, it can be noticed how the 

compatibilized blends (T0.5 and T1), exhibit an increased contact angle compared to the 

corresponding un-compatibilized ones (T0). This can be related to the new co-polyester-urethane 

networks, which should have a more hydrophobic behavior due to a change in structural 

composition that lowers the interaction between the liquid and the substrate. 

 
This result suggests that the degradation rate will be lower and consequently the mechanical 

properties will be maintained for longer time during the use of the blend in a biological medium. 

The polyesters studied in this work are well known to be susceptible to hydrolytic and/or 

enzymatic bio absorption and their physical properties trends are coherent with the molecular 

weight changes during use. It is possible then to make easy drug delivery systems with good drug 

absorption kinetics [24-29] which can also be studied by software modeling and further 

description [30]. 

 

3.5  FTIR-ATR spectroscopy 

 

Harada et al. [3], highlighted as this kind of reactive mixing brings to the formation of high 

molecular weight, grafted and/or cross linked, co-polyester-urethanes (see the reaction scheme of 

figure 9).   

 

 

This is confirmed by the results above discussed, since it was found that the increase in the 

torque values, and hence in viscosity, is strictly related to the amount of LTI added, as it can be 
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seen in the graph of figure 1b  and table I . Besides, the same data are also in agreement with the 

calorimetric data which suggest the formation of new structures with more amorphous (or less 

ordered) composition.  

In order to better investigate about new structure composition, FTIR-ATR spectroscopy have 

been performed and discussed in the following. Figure 10 shows the change in FTIR-ATR 

spectra due to the LTI addition to the A50C50 blend. The stretching of carbonyl peak, around 

1722 cm-1 . 

In the A50C50 blend, is shifted to 1720 cm-1 after the addition of 0,5 phr of LTI and to 1712 cm-1 

after the addition of 1.0 phr. This confirms that new structures containing carbonyls (probably 

the carbamate groups -NH(CO)O-) are formed during the reactive mixing inside the mixer 

chamber. Carbamate groups originates from the reaction of –OH functional groups of polyesters 

and N=C=O functional groups of LTI. 

It was expected, in particular for the highest amount of LTI, to find the characteristic peak of 

N=C=O at about 2270 cm-1, as this amount was considered to be in excess of the available OH 

groups. Its absence is however desirable as unreacted isocyanate groups are highly reactive and 

potentially toxic.  

 

4. Conclusions 

In this paper, we have reported a study on the effect of LTI as compatibilizing agent  for 

PLA/PCL blends. Physical and mechanical features have been studied and compared before and 

after LTI addition in two different amounts (0.5 and 1.0 phr). The results highlight a synergicistic 

effect in the blends, thanks to the improved compatibility between the two polymeric phases. 

Compatibility increases by increasing the LTI amount In particular, the improvement in 

maximum deformation and breakage work evidenced a grown in ductility, while the 

improvement in yield stress and ultimate tensile strength highlighted an improvement in 

mechanical strength of the blends. 

The ratio of PLA and PCL content in the compatibilized blends, results in materials with 

different properties that can be useful for different applications where specific strength, ductility 

and degradation rates are desired.  

Due to the specific mechanical and physical features shown in this paper, our materials could 

be employed in the biomedical field as bio resorbable suture threads. Their high ductility, in fact, 
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is important to allow the formation of knots with good mechanical resistance. In addition, knots 

must have  a stiffness that can support the sealing of tissues without compromising their integrity 

Torque, calorimetric and FTIR analyses all suggest the in-situ formation of a block-copolymer 

that acts as a compatibilizer.  

 Studies are in progress to check the blends stability during the application time, and to verify, 

their applicability in the specific as absorbable suture threads or scaffolds for cellular growth. In 

fact, further steps forward in applicative fields could be done by adding our reactive blends with 

other substances during their processing. For examples blends could be mixed with antibiotics or 

Vascular Endothelial Growth Factor (VEGF) with the aim to solve infections or to stimulate 

cellular growth. Alternatively, the use of ceramics or carbon nanofiller can give a further 

enhancement in stiffness and in mechanical strength for bone implants application.  
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Figure 1- Torque trends during mixing time of pure polymers and blends (a); of A50C50 blend 

before and after the addition of different amounts of LTI compatibilizer (b).  
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Figure 2 – Stress Strain curves for pure materials and un-compatibilized blends 
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Figure 3 –SEM micrographs of A50C50 blend un-compatibilized (a), and compatibilized  
with 0.5 phr (b) and 1 phr(c) 
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Figure 4 – Stress Strain curves for pure and compatibilized blends 
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Figure 5 –Image of a dog bone sample of A100, C100,  A50C50,  A50C50T0.5, A50C50T1.0 
before (a) and after (b) a tensile test. 
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  Figure 6-Work at fracture (a),Young Modulus (b), maximum stress (c) and stress at yielding (d) 
for all the blends (pure,T0.5 and T1) as a function of the PCL content. 
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Figure 7 – DSC spectra of pure and compatibilized A80C20 (a) and A20C80 blends (b) in the 
left with and expansion of two peaks in the right. 
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Figure 8 - Contact angle in PBS as a function of PCL amount and of the LTI amount 
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Figure 9 – Reaction Scheme for PLA - PCL – LTI 
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Figure 10- ATR Spectra of A50C50, A50C50T0.5 and A50C50T1 
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