53 research outputs found
Alberto Basso : discurs llegit a la cerimònia d'investidura celebrada a l'Auditori de la Facultat de Filosofia i Lletres el dia 20 d'octubre de l'any 2004
Alberto Basso va néixer a Torí el 21 d'agost de 1931. L'any 1952 va guanyar el concurs nacional del Ministeri d'Instrucció Pública amb una monografia titulada L'opera di Igor Stravinskij. El 1957 es va llicenciar en jurisprudència i va presentar una tesi de filosofia del dret que va obtenir el primer premi de llicenciatura de la Facultat de Filosofia de la Universitat de Torí. De 1961 a 1974, va ser professor d'Història de la Música al conservatori de Torí, i després va ser nomenat director de la biblioteca de l'esmentat centre. Ha estat president de la Società Italiana di Musicologia i membre del Consell d'Administració del Teatro Regio de Torí. El 1986 va fundar l'Istituto per i Beni Musicali in Piemonte, que presideix i des del qual ha desenvolupat una excel·lent tasca de recerca musicològica. Basso, un dels grans especialistes en la vida i obra de Johann Sebastian Bach, l'any 2000 (250è aniversari de la mort de l'autor) va ser nomenat acadèmic de la Reial Acadèmia Catalana de Belles Arts de Sant Jordi. El 1984 va obtenir el guardó de cavaliere dell'Ordine al Merito della Repubblica Italiana, i el 1991 va ser nomenat president del Comitè Científic de les celebracions del mil·lenari de Guido d'Arezzo. Cal destacar la seva tasca divulgativa en el Terzo Programma de la Radio-Televisione Italiana i en diverses revistes, entre les quals cal citar Rivista Italiana di Musicologia, Note d'Archivio per la Storia Musicale, Nuova Serie, Musica / Realtà i Studi Piemontesi.Nomenament 29/04/2004. A proposta de Facultat de Filosofia i Lletres. Investidura 20/10/2004. Padrí: Francesc Bonastr
Paper Withdrawn Before the Issue Release
This paper presents the architecture and implementation of a set of novel sensor nodes designed to measure ammonium, nitrate and chloride in real time, sending the data, by means of a network, to the base station in order to control the pollution in a lake. The results obtained being compared with those provided by the corresponding reference methods. Recovery analyses with ion selective electrodes and standard methods, study of interferences, and evaluation of major sensor features have also been carried out. The use of a wireless system for monitoring purposes will not only reduce the overall monitoring system cost in term of facilities setup and labor cost, but will also provide flexibility in terms of distance. The major advantages of the proposed in-line analysis compared with the classical off-line procedures are the elimination of contaminants due to sample handling, the minimization of the overall cost of data acquisition, the possibility of real-time analysis, allowing the rapid detection of pollutants, the ability to obtain detailed spatial and temporal data sets of complete environments, obtaining the spatial distribution of the analyzed parameters, as well as its variation with the passing of time, and finally the possibility of performing measurements in locations which are difficult to access (in this case a deep lake)
Dependability assessment of by-wire control systems using fault injection
This paper is focused on the validation by means of physical fault injection at pin-level of a time-triggered communication controller: the TTP/C versions C1 and C2. The controller is a commercial off-the-shelf product used in the design of by-wire systems. Drive-by-wire and fly-by-wire active safety controls aim to prevent accidents. They are considered to be of critical importance because a serious situation may directly affect user safety. Therefore, dependability assessment is vital in their design.
This work was funded by the European project `Fault Injection for TTA¿ and it is divided into two parts. In the first part, there is a verification of the dependability specifications of the TTP communication protocol, based on TTA, in the presence of faults directly induced in communication lines. The second part contains a validation and improvement proposal for the architecture in case of data errors. Such errors are due to faults that occurred during writing (or reading) actions on memory or during data storage.Blanc Clavero, S.; Bonastre Pina, AM.; Gil, P. (2009). Dependability assessment of by-wire control systems using fault injection. Journal of Systems Architecture. 55(2):102-113. doi:10.1016/j.sysarc.2008.09.003S10211355
A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water
[EN] In a constantly evolving world, new technologies such as Internet of Things (IoT) and cloud-based services offer great opportunities in many fields. In this paper we propose a new approach to the development of smart sensors using IoT and cloud computing, which open new interesting possibilities in analytical chemistry. According to IoT philosophy, these new sensors are able to integrate the generated data on the existing IoT platforms, so that information may be used whenever needed. Furthermore, the utilization of these technologies permits one to obtain sensors with significantly enhanced features using the information available in the cloud. To validate our new approach, a bicarbonate IoT-based smart sensor has been developed. A classical CO2 ion selective electrode (ISE) utilizes the pH information retrieved from the cloud and then provides an indirect measurement of bicarbonate concentration, which is offered to the cloud. The experimental data obtained are compared to those yielded by three other classical ISEs, with satisfactory results being achieved in most instances. Additionally, this methodology leads to lower-consumption, low-cost bicarbonate sensors capable of being employed within an IoT application, for instance in the continuous monitoring of HCO3- in rivers. Most importantly, this innovative application field of IoT and cloud approaches can be clearly perceived as an indicator for future developments over the short-term.This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P.Capella Hernández, JV.; Bonastre Pina, AM.; Ors Carot, R.; Peris Tortajada, M. (2019). A new application of Internet of Things and Cloud Services in Analytical Chemistry: Determination of bicarbonate in water. Sensors. 19(24):1-13. https://doi.org/10.3390/s19245528S1131924Perry, C. T., Salter, M. A., Harborne, A. R., Crowley, S. F., Jelks, H. L., & Wilson, R. W. (2011). Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proceedings of the National Academy of Sciences, 108(10), 3865-3869. doi:10.1073/pnas.1015895108Pandolfi, J. M., Connolly, S. R., Marshall, D. J., & Cohen, A. L. (2011). Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science, 333(6041), 418-422. doi:10.1126/science.1204794Jaquet, J.-M., Nirel, P., & Martignier, A. (2013). Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic lake Geneva (Switzerland). Journal of Limnology, 72(3), 50. doi:10.4081/jlimnol.2013.e50Lewis, C. N., Brown, K. A., Edwards, L. A., Cooper, G., & Findlay, H. S. (2013). Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences, 110(51), E4960-E4967. doi:10.1073/pnas.1315162110Kaloo, M. A., Sunder Raman, R., & Sankar, J. (2016). Novel structurally tuned DAMN receptor for «in situ» diagnosis of bicarbonate in environmental waters. The Analyst, 141(8), 2367-2370. doi:10.1039/c6an00218hBotta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2014). A step forward in the in-line river monitoring of nitrate by means of a wireless sensor network. Sensors and Actuators B: Chemical, 195, 396-403. doi:10.1016/j.snb.2014.01.039Dang, L. M., Piran, M. J., Han, D., Min, K., & Moon, H. (2019). A Survey on Internet of Things and Cloud Computing for Healthcare. Electronics, 8(7), 768. doi:10.3390/electronics8070768Lopez-Barbosa, N., Gamarra, J. D., & Osma, J. F. (2016). The future point-of-care detection of disease and its data capture and handling. Analytical and Bioanalytical Chemistry, 408(11), 2827-2837. doi:10.1007/s00216-015-9249-2Kassal, P., Steinberg, I. M., & Steinberg, M. D. (2013). Wireless smart tag with potentiometric input for ultra low-power chemical sensing. Sensors and Actuators B: Chemical, 184, 254-259. doi:10.1016/j.snb.2013.04.049Piyare, R., & Lee, S. R. (2013). Towards Internet of Things (IOTS): Integration of Wireless Sensor Network to Cloud Services for Data Collection and Sharing. International journal of Computer Networks & Communications, 5(5), 59-72. doi:10.5121/ijcnc.2013.5505Carminati, M., Mezzera, L., Ferrari, G., Sampietro, M., Turolla, A., Di Mauro, M., & Antonelli, M. (2018). A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-Fouling Self-Diagnostics. 2018 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/iscas.2018.8351833Borrego, C., Ginja, J., Coutinho, M., Ribeiro, C., Karatzas, K., Sioumis, T., … Penza, M. (2018). Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise – Part II. Atmospheric Environment, 193, 127-142. doi:10.1016/j.atmosenv.2018.08.028Gervasi, O., Murgante, B., Misra, S., Gavrilova, M. L., Rocha, A. M. A. C., Torre, C., … Apduhan, B. O. (Eds.). (2015). Computational Science and Its Applications -- ICCSA 2015. Lecture Notes in Computer Science. doi:10.1007/978-3-319-21407-8LIU, Y., LIANG, Y., XUE, L., LIU, R., TAO, J., ZHOU, D., … HU, W. (2019). Polystyrene-coated Interdigitated Microelectrode Array to Detect Free Chlorine towards IoT Applications. Analytical Sciences, 35(5), 505-509. doi:10.2116/analsci.18p460Ping, H., Wang, J., Ma, Z., & Du, Y. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety. International Journal of Agricultural and Biological Engineering, 11(5), 35-45. doi:10.25165/j.ijabe.20181105.3092Alreshaid, A. T., Hester, J. G., Su, W., Fang, Y., & Tentzeris, M. M. (2018). Review—Ink-Jet Printed Wireless Liquid and Gas Sensors for IoT, SmartAg and Smart City Applications. Journal of The Electrochemical Society, 165(10), B407-B413. doi:10.1149/2.0341810jesDjelouat, H., Amira, A., & Bensaali, F. (2018). Compressive Sensing-Based IoT Applications: A Review. Journal of Sensor and Actuator Networks, 7(4), 45. doi:10.3390/jsan7040045Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 266, 228-245. doi:10.1016/j.snb.2018.03.074Alahi, M. E. E., Xie, L., Mukhopadhyay, S., & Burkitt, L. (2017). A Temperature Compensated Smart Nitrate-Sensor for Agricultural Industry. IEEE Transactions on Industrial Electronics, 64(9), 7333-7341. doi:10.1109/tie.2017.2696508FIWARE Foundationhttps://www.fiware.org/Xie, X., & Bakker, E. (2013). Non-Severinghaus Potentiometric Dissolved CO2 Sensor with Improved Characteristics. Analytical Chemistry, 85(3), 1332-1336. doi:10.1021/ac303534
Use of wheat, triticale and rye flours in layer cake production
In this study, the capacity of obtaining high quality layer cakes from rye and triticale lines was analysed and compared to wheat lines. The samples were characterised considering grain hardness, flour composition and quality parameters as protein, pentosan, damaged starch, pasting viscosity and functional predictive test - solvent retention capacity test. Cakes were analysed in weight, symmetry, volume, volume index (VI) by measuring the height in different points of the cake, crust and crumb colour, crumb structure and texture. Wheat and triticale cakes showed similar characteristics. Rye cakes showed higher volume and lower weight than those with crumbs darker in colour, higher adhesiveness, springiness and resilience. The multiple regression analysis was used to develop an equation for cake volume index prediction. The best-fit linear regression model was: VI = 14.75 - 0.14 protein + 0.93 water soluble pentosan - 0.27 total pentosan. Despite the differences, high quality cakes can be elaborated with rye, triticale and soft wheat cultivars. © 2010 The Authors. Journal compilation © 2010 Institute of Food Science and Technology.Fil: Oliete, Bonastre. Universidad de Valladolid; EspañaFil: Perez, Gabriela Teresa. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Gómez, Manuel. Universidad de Valladolid; EspañaFil: Ribotta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Moiraghi, Malena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Leon, Alberto Edel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentin
Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties
New Contact Sensorization Smart System for IoT e-Health Applications Based on IBC IEEE 802.15.6 Communications
[EN] This paper proposes and demonstrates the capabilities of a new sensorization system that monitors skin contact between two persons. Based on the intrabody communication standard (802.15.6), the new system allows for interbody communication, through the transmission of messages between di erent persons through the skin when they are touching. The system not only detects if there has been contact between two persons but, as a novelty, is also able to identify the elements that have been in contact. This sensor will be applied to analyze and monitor good follow-up of hand hygiene practice in health care, following the ¿World Health Organization Guidelines on Hand Hygiene in Health Care¿. This guide proposes specific recommendations to improve hygiene practices and reduce the transmission of pathogenic microorganisms between patients and health-care workers (HCW). The transmission of nosocomial infections due to improper hand hygiene could be reduced with the aid of a monitoring system that would prevent HCWs from violating the protocol. The cutting-edge sensor proposed in this paper is a crucial innovation for the development of this automated hand hygiene monitoring system (AHHMS).This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P.Hernández, D.; Ors Carot, R.; Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC. (2020). New Contact Sensorization Smart System for IoT e-Health Applications Based on IBC IEEE 802.15.6 Communications. Sensors. 20(24):1-17. https://doi.org/10.3390/s20247097S117202
A New Ammonium Smart Sensor with Interference Rejection
[EN] In many water samples, it is important to determine the ammonium concentration in order to obtain an overall picture of the environmental impact of pollutants and human actions, as well as to detect the stage of eutrophization. Ion selective electrodes (ISEs) have been commonly utilized for this purpose, although the presence of interfering ions (potassium and sodium in the case of NH4+-ISE) represents a handicap in terms of the measurement quality. Furthermore, random malfunctions may give rise to incorrect measurements. Bearing all of that in mind, a smart ammonium sensor with enhanced features has been developed and tested in water samples, as demonstrated and commented on in detail following the presentation of the complete set of experimental measurements that have been successfully carried out. This has been achieved through the implementation of an expert system that supervises a set of ISEs in order to (a) avoid random failures and (b) reject interferences. Our approach may also be suitable for in-line monitoring of the water quality through the implementation of wireless sensor networks.This research was supported by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P.Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC.; Ors Carot, R.; Peris Tortajada, M. (2020). A New Ammonium Smart Sensor with Interference Rejection. Sensors. 20(24):1-17. https://doi.org/10.3390/s20247102S1172024Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002Zhu, Y., Chen, J., Yuan, D., Yang, Z., Shi, X., Li, H., … Ran, L. (2019). Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 119, 115627. doi:10.1016/j.trac.2019.115627Liu, J. (2020). New directions in sensor technology. TrAC Trends in Analytical Chemistry, 124, 115818. doi:10.1016/j.trac.2020.115818Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., … Legin, A. (2020). Real-Time Water Quality Monitoring with Chemical Sensors. Sensors, 20(12), 3432. doi:10.3390/s20123432Martı́nez-Máñez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibáñez, J., & Llobet, E. (2005). An «electronic tongue» design for the qualitative analysis of natural waters. Sensors and Actuators B: Chemical, 104(2), 302-307. doi:10.1016/j.snb.2004.05.022Legin, A. ., Rudnitskaya, A. ., Vlasov, Y. ., Di Natale, C., & D’Amico, A. (1999). The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators B: Chemical, 58(1-3), 464-468. doi:10.1016/s0925-4005(99)00127-6Mueller, A. V., & Hemond, H. F. (2013). Extended artificial neural networks: Incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta, 117, 112-118. doi:10.1016/j.talanta.2013.08.045Wen, Y., Mao, Y., Kang, Z., & Luo, Q. (2019). Application of an ammonium ion-selective electrode for the real-time measurement of ammonia nitrogen based on pH and temperature compensation. Measurement, 137, 98-101. doi:10.1016/j.measurement.2019.01.031Handbook of Electrochemistry. (2007). doi:10.1016/b978-0-444-51958-0.x5000-9Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72(10), 1851-2082. doi:10.1351/pac200072101851Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2015). An interference-tolerant nitrate smart sensor for Wireless Sensor Network applications. Sensors and Actuators B: Chemical, 213, 534-540. doi:10.1016/j.snb.2015.02.125Choudhary, J., Balasubramanian, P., Varghese, D., Singh, D., & Maskell, D. (2019). Generalized Majority Voter Design Method for N-Modular Redundant Systems Used in Mission- and Safety-Critical Applications. Computers, 8(1), 10. doi:10.3390/computers8010010Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2014). A step forward in the in-line river monitoring of nitrate by means of a wireless sensor network. Sensors and Actuators B: Chemical, 195, 396-403. doi:10.1016/j.snb.2014.01.039Cuartero, M., Colozza, N., Fernández-Pérez, B. M., & Crespo, G. A. (2020). Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors – an overview of the progress in the last 20 years. The Analyst, 145(9), 3188-3210. doi:10.1039/d0an00327aBembe, M., Abu-Mahfouz, A., Masonta, M., & Ngqondi, T. (2019). A survey on low-power wide area networks for IoT applications. Telecommunication Systems, 71(2), 249-274. doi:10.1007/s11235-019-00557-9Freiser, H. (Ed.). (1980). Ion-Selective Electrodes in Analytical Chemistry. doi:10.1007/978-1-4684-3776-8Peris, M., Bonastre, A., & Ors, R. (1998). Distributed expert system for the monitoring and control of chemical processes. Laboratory Robotics and Automation, 10(3), 163-168. doi:10.1002/(sici)1098-2728(1998)10:33.0.co;2-2Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., … Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. doi:10.3390/s20041125Nakas, C., Kandris, D., & Visvardis, G. (2020). Energy Efficient Routing in Wireless Sensor Networks: A Comprehensive Survey. Algorithms, 13(3), 72. doi:10.3390/a13030072Capella, J. V., Bonastre, A., Campelo, J. C., Ors, R., & Peris, M. (2020). IoT & environmental analytical chemistry: Towards a profitable symbiosis. Trends in Environmental Analytical Chemistry, 27, e00095. doi:10.1016/j.teac.2020.e00095Pretsch, E. (2007). The new wave of ion-selective electrodes. TrAC Trends in Analytical Chemistry, 26(1), 46-51. doi:10.1016/j.trac.2006.10.006STM Microelectronics https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x2/stm32l422cb.htmlAnalog Devices https://www.analog.com/media/en/technical-documentation/data-sheets/AD524.pdfCapella, J. V., Bonastre, A., Ors, R., & Peris, M. (2010). A Wireless Sensor Network approach for distributed in-line chemical analysis of water. Talanta, 80(5), 1789-1798. doi:10.1016/j.talanta.2009.10.025Bonastre, A., Capella, J. V., Ors, R., & Peris, M. (2012). In-line monitoring of chemical-analysis processes using Wireless Sensor Networks. TrAC Trends in Analytical Chemistry, 34, 111-125. doi:10.1016/j.trac.2011.11.009Mei-Chen Hsueh, Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and tools. Computer, 30(4), 75-82. doi:10.1109/2.58515
Análisis de una bomba trabajando como turbina para la recuperación de energía en una red de riego de la C.R. Picassent (Sector IV)
[SPA] El objetivo del presente trabajo es el análisis energético de un sistema de riego en el Sector IV de la Comunidad de Regantes de Picassent para instalar una bomba trabajando como turbina (Pump As Turbine, PAT). El análisis de la eficiencia energética en redes de riego permite determinar y aprovechar la energía hidráulica disponible en el sistema de riego con el objetivo de obtener una instalación lo más autosuficiente posible. En este trabajo se estudiará a través de simulaciones en EPANET una red abastecida por gravedad desde la balsa de San Rafael (T. M. Picassent) a una cota de 165 m hasta una zona regable donde los hidrantes multiusuario reciben presiones excesivas a cotas en torno a 95 m. Para ello se decide instalar una PAT que permita recuperar el posible excedente de energía, estudiando cuatro escenarios diferentes de distribución del riego. La zona regable tiene diferentes cultivos leñosos en producción, con una dominancia de los cítricos, teniendo por otro lado aguacates y caquis. Estos cultivos cubren una superficie aproximada de 30 ha. Se realizará un diseño agronómico para estimar las necesidades de riego que tienen los cultivos durante el año y la posible organización del riego en función de los escenarios contemplados. Finalmente, se propone un nuevo modelo de la red con las demandas de agua previstas y se estima la energía recuperable para cada escenario garantizando el correcto funcionamiento del sistema a lo largo de la campaña de riego. De esta forma, se concluirá sobre las condiciones idóneas para la implantación de la PAT en una red de riego. [ENG] The aim of this project is the energetic analysis of an irrigation system belonging to the Water Users Association (WUA) of Picassent’s municipality, located in the Sector IV, and assess the possibility of installing a Pump working as a Turbine (PAT). This type of análisis allows us to evaluate the energetical efficiency and take advantage of the hydric energy availability. This project is divided into two different parts. The first part is related to the irrigation system, the estimation of the hydric and soil requirements will be carried out in accordance with the crops needs. Filling an area of approximately 30 hectares, the irrigation system will supply three different types of woody crops: citrics, avocado and khaki. The design of this part will be composed of the agronomic design in accordance with the characteristics of the crops, the selection of irrigation sectors and finally, the size of the pipelines. The second part is related to the PAT, the one that will be used to produce energy from the energy jump between the water deposit and the multioutlet hydrant. To be able to study both parts and obtain consistent results, four different scenarios of irrigation sectorization will be presented in accordance with the real operating situations. Finally, it will be able to estimate the energy recovery from this system during a year in accordance with the water supply. It will allows us to evaluate the efficiency and selfsufficiency
- …