120 research outputs found

    Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm

    Get PDF
    [EN] Single primer enrichment technology (SPET) is a new, robust, and customizable solution for targeted genotyping. Unlike genotyping by sequencing (GBS), and like DNA chips, SPET is a targeted genotyping technology, relying on the sequencing of a region flanking a primer. Its reliance on single primers, rather than on primer pairs, greatly simplifies panel design, and allows higher levels of multiplexing than PCR-based genotyping. Thanks to the sequencing of the regions surrounding the target SNP, SPET allows the discovery of thousands of closely linked, novel SNPs. In order to assess the potential of SPET for high-throughput genotyping in plants, a panel comprising 5k target SNPs, designed both on coding regions and introns/UTRs, was developed for tomato and eggplant. Genotyping of two panels composed of 400 tomato and 422 eggplant accessions, comprising both domesticated material and wild relatives, generated a total of 12,002 and 30,731 high confidence SNPs, respectively, which comprised both target and novel SNPs in an approximate ratio of 1:1.6, and 1:5.5 in tomato and eggplant, respectively. The vast majority of the markers was transferrable to related species that diverged up to 3.4 million years ago (Solanum pennellii for tomato and S. macrocarpon for eggplant). Maximum Likelihood phylogenetic trees and PCA outputs obtained from the whole dataset highlighted genetic relationships among accessions and species which were congruent with what was previously reported in literature. Better discrimination among domesticated accessions was achieved by using the target SNPs, while better discrimination among wild species was achieved using the whole SNP dataset. Our results reveal that SPET genotyping is a robust, high-throughput technology for genetic fingerprinting, with a high degree of cross-transferability between crops and their cultivated and wild relatives, and allows identification of duplicates and mislabeled accessions in genebanks.This work has been funded by the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement number 677379 (G2P-SOL project: Linking genetic resources, genomes, and phenotypes of solanaceous crops).Barchi, L.; Acquadro, A.; Alonso-Martín, D.; Aprea, G.; Bassolino, L.; Demurtas, O.; Ferrante, P.... (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science. 10:1-17. https://doi.org/10.3389/fpls.2019.01005S11710Acquadro, A., Barchi, L., Gramazio, P., Portis, E., Vilanova, S., Comino, C., … Lanteri, S. (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLOS ONE, 12(7), e0180774. doi:10.1371/journal.pone.0180774Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181-186. doi:10.1139/g93-024Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-wBeddows, I., Reddy, A., Kloesges, T., & Rose, L. E. (2017). Population Genomics in Wild Tomatoes—The Interplay of Divergence and Admixture. Genome Biology and Evolution, 9(11), 3023-3038. doi:10.1093/gbe/evx224Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1Caicedo, A. L., & Schaal, B. A. (2004). Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Molecular Ecology, 13(7), 1871-1882. doi:10.1111/j.1365-294x.2004.02191.xCastle, J. C. (2011). SNPs Occur in Regions with Less Genomic Sequence Conservation. PLoS ONE, 6(6), e20660. doi:10.1371/journal.pone.0020660Cericola, F., Portis, E., Toppino, L., Barchi, L., Acciarri, N., Ciriaci, T., … Lanteri, S. (2013). The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin. PLoS ONE, 8(9), e73702. doi:10.1371/journal.pone.0073702Chen, K.-Y., Cong, B., Wing, R., Vrebalov, J., & Tanksley, S. D. (2007). Changes in Regulation of a Transcription Factor Lead to Autogamy in Cultivated Tomatoes. Science, 318(5850), 643-645. doi:10.1126/science.1148428Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis ofse2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499-510. doi:10.1038/nrg3012Del Fabbro, C., Scalabrin, S., Morgante, M., & Giorgi, F. M. (2013). An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis. PLoS ONE, 8(12), e85024. doi:10.1371/journal.pone.0085024DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498. doi:10.1038/ng.806Dodsworth, S., Chase, M. W., Särkinen, T., Knapp, S., & Leitch, A. R. (2015). Using genomic repeats for phylogenomics: a case study in wild tomatoes (SolanumsectionLycopersicon: Solanaceae). Biological Journal of the Linnean Society, 117(1), 96-105. doi:10.1111/bij.12612Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379Flint-Garcia, S. A. (2013). Genetics and Consequences of Crop Domestication. Journal of Agricultural and Food Chemistry, 61(35), 8267-8276. doi:10.1021/jf305511dGramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. doi:10.1093/molbev/msx281Hoheisel, J. D. (2006). Microarray technology: beyond transcript profiling and genotype analysis. Nature Reviews Genetics, 7(3), 200-210. doi:10.1038/nrg1809Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular Biology and Evolution, 33(6), 1635-1638. doi:10.1093/molbev/msw046Isshiki, S., Iwata, N., & Khan, M. M. R. (2008). ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Scientia Horticulturae, 117(3), 186-190. doi:10.1016/j.scienta.2008.04.003Kamenetzky, L., Asís, R., Bassi, S., de Godoy, F., Bermúdez, L., Fernie, A. R., … Carrari, F. (2010). Genomic Analysis of Wild Tomato Introgressions Determining Metabolism- and Yield-Associated Traits. Plant Physiology, 152(4), 1772-1786. doi:10.1104/pp.109.150532Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant ( Solanum melongena ). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117Lynch, V. J., & Wagner, G. P. (2010). DID EGG-LAYING BOAS BREAK DOLLO’S LAW? PHYLOGENETIC EVIDENCE FOR REVERSAL TO OVIPARITY IN SAND BOAS (ERYX: BOIDAE). Evolution, 64(1), 207-216. doi:10.1111/j.1558-5646.2009.00790.xMammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP Markers and Their Impact on Plant Breeding. International Journal of Plant Genomics, 2012, 1-11. doi:10.1155/2012/728398Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10. doi:10.14806/ej.17.1.200Mason, A. S., Zhang, J., Tollenaere, R., Vasquez Teuber, P., Dalton-Morgan, J., Hu, L., … Batley, J. (2015). High-throughput genotyping for species identification and diversity assessment in germplasm collections. Molecular Ecology Resources, 15(5), 1091-1101. doi:10.1111/1755-0998.12379Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Miz, R. B., Mentz, L. A., & Souza-Chies, T. T. (2007). Overview of the phylogenetic relationships of some southern Brazilian species from section Torva and related sections of «spiny Solanum» (Solanum subgenus Leptostemonum, Solanaceae). Genetica, 132(2), 143-158. doi:10.1007/s10709-007-9156-3Nairismägi, M.-L., Tan, J., Lim, J. Q., Nagarajan, S., Ng, C. C. Y., Rajasegaran, V., … Ong, C. K. (2016). JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia, 30(6), 1311-1319. doi:10.1038/leu.2016.13Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. doi:10.1093/molbev/msu300Pailles, Y., Ho, S., Pires, I. S., Tester, M., Negrão, S., & Schmöckel, S. M. (2017). Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00138Herraiz, F. J., Blanca, J., Ziarsolo, P., Gramazio, P., Plazas, M., Anderson, G. J., … Vilanova, S. (2016). The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato. BMC Genomics, 17(1). doi:10.1186/s12864-016-2656-8Plazas, M., Andújar, I., Vilanova, S., Gramazio, P., Herraiz, F. J., & Prohens, J. (2014). Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00318Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Van der Auwera, G. A., … Banks, E. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples. doi:10.1101/201178Razali, R., Bougouffa, S., Morton, M. J. L., Lightfoot, D. J., Alam, I., Essack, M., … Negrão, S. (2018). The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01402Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2), 131-147. doi:10.1016/0025-5564(81)90043-2Rodriguez, F., Wu, F., Ané, C., Tanksley, S., & Spooner, D. M. (2009). Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evolutionary Biology, 9(1), 191. doi:10.1186/1471-2148-9-191Sakata, Y., & Lester, R. N. (1997). Euphytica, 97(3), 295-301. doi:10.1023/a:1003000612441Sakata, Y., Nishio, T., & Matthews, P. J. (1991). Chloroplast DNA analysis of eggplant (Solanum melongena) and related species for their taxonomic affinity. Euphytica, 55(1), 21-26. doi:10.1007/bf00022555Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13(1), 214. doi:10.1186/1471-2148-13-214Scaglione, D., Pinosio, S., Marroni, F., Di Centa, E., Fornasiero, A., Magris, G., … Morgante, M. (2019). Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Annals of Botany, 124(4), 543-551. doi:10.1093/aob/mcz054Scheben, A., Batley, J., & Edwards, D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnology Journal, 15(2), 149-161. doi:10.1111/pbi.12645Scolnick, J. A., Dimon, M., Wang, I.-C., Huelga, S. C., & Amorese, D. A. (2015). An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples. PLOS ONE, 10(7), e0128916. doi:10.1371/journal.pone.0128916Semagn, K., Babu, R., Hearne, S., & Olsen, M. (2013). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding, 33(1), 1-14. doi:10.1007/s11032-013-9917-xSim, S.-C., Van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE, 7(9), e45520. doi:10.1371/journal.pone.0045520Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., … Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 103(4), 635-651. doi:10.3732/ajb.1500539(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Thomson, R. C., & Shaffer, H. B. (2010). Sparse Supermatrices for Phylogenetic Inference: Taxonomy, Alignment, Rogue Taxa, and the Phylogeny of Living Turtles. Systematic Biology, 59(1), 42-58. doi:10.1093/sysbio/syp075Tranchida-Lombardo, V., Mercati, F., Avino, M., Punzo, P., Fiore, M. C., Poma, I., … Grillo, S. (2018). Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 153(2), 288-297. doi:10.1080/11263504.2018.1478900Vilanova, S., Manzur, J. P., & Prohens, J. (2011). Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Molecular Breeding, 30(2), 647-660. doi:10.1007/s11032-011-9650-2Vorontsova, M. S., Stern, S., Bohs, L., & Knapp, S. (2013). African spinySolanum(subgenusLeptostemonum, Solanaceae): a thorny phylogenetic tangle. Botanical Journal of the Linnean Society, 173(2), 176-193. doi:10.1111/boj.12053Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. TAXON, 59(1), 49-56. doi:10.1002/tax.591006Tan, M. H., Gan, H. M., Schultz, M. B., & Austin, C. M. (2015). MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Molecular Phylogenetics and Evolution, 85, 180-188. doi:10.1016/j.ympev.2015.02.009Wiens, J. J., & Morrill, M. C. (2011). Missing Data in Phylogenetic Analysis: Reconciling Results from Simulations and Empirical Data. Systematic Biology, 60(5), 719-731. doi:10.1093/sysbio/syr025Williams, C. E., & Clair, D. A. S. (1993). Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome, 36(3), 619-630. doi:10.1139/g93-083Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. doi:10.1093/bioinformatics/bts60

    II Consenso Brasileiro de Câncer Gástrico realizado pela Associação Brasileira de Câncer Gástrico

    Get PDF
    Background: Since the publication of the first Brazilian Consensus on Gastric Cancer (GC) in 2012 carried out by the Brazilian Gastric Cancer Association, new concepts on diagnosis, staging, treatment and follow-up have been incorporated. Aim: This new consensus is to promote an update to professionals working in the fight against GC and to provide guidelines for the management of patients with this condition. Methods: Fiftynine experts answered 67 statements regarding the diagnosis, staging, treatment and prognosis of GC with five possible alternatives: 1) fully agree; 2) partially agree; 3) undecided; 4) disagree and 5) strongly disagree A consensus was adopted when at least 80% of the sum of the answers “fully agree” and “partially agree” was reached. This article presents only the responses of the participating experts. Comments on each statement, as well as a literature review, will be presented in future publications. Results: Of the 67 statements, there was consensus in 50 (74%). In 10 declarations, there was 100% agreement. Conclusion: The gastric cancer treatment has evolved considerably in recent years. This consensus gathers consolidated principles in the last decades, new knowledge acquired recently, as well as promising perspectives on the management of this disease.Racional: Desde a publicação do primeiro Consenso Brasileiro sobre Câncer Gástrico em 2012 realizado pela Associação Brasileira de Câncer Gástrico (ABCG), novos conceitos sobre o diagnóstico, estadiamento, tratamento e seguimento foram incorporados. Objetivo: Promover uma atualização aos profissionais que atuam no combate ao câncer gástrico (CG) e fornecer diretrizes quanto ao manejo dos pacientes portadores desta afecção. Métodos: Cinquenta e nove especialistas responderam 67 declarações sobre o diagnóstico, estadiamento, tratamento e prognóstico do CG com cinco alternativas possíveis: 1) concordo plenamente; 2) concordo parcialmente; 3) indeciso; 4) discordo e 5) discordo fortemente. Foi considerado consenso a concordância de pelo menos 80% da soma das respostas “concordo plenamente” e “concordo parcialmente”. Este artigo apresenta apenas as respostas dos especialistas participantes. Os comentários sobre cada declaração, assim como uma revisão da literatura serão apresentados em publicações futuras. Resultados: Das 67 declarações, houve consenso em 50 (74%). Em 10 declarações, houve concordância de 100%. Conclusão: O tratamento do câncer gástrico evoluiu consideravelmente nos últimos anos. Este consenso reúne princípios consolidados nas últimas décadas, novos conhecimentos adquiridos recentemente, assim como perspectivas promissoras sobre o manejo desta doença

    Identification of SNP and SSR markers in eggplant using RAD tag sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The eggplant (<it>Solanum melongena </it>L.) genome is relatively unexplored, especially compared to those of the other major <it>Solanaceae </it>crops tomato and potato. In particular, no SNP markers are publicly available; on the other hand, over 1,000 SSR markers were developed and publicly available. We have combined the recently developed Restriction-site Associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of both SNP and SSR markers for eggplant.</p> <p>Results</p> <p>RAD tags were generated from the genomic DNA of a pair of eggplant mapping parents, and sequenced to produce ~17.5 Mb of sequences arrangeable into ~78,000 contigs. The resulting non-redundant genomic sequence dataset consisted of ~45,000 sequences, of which ~29% were putative coding sequences and ~70% were in common between the mapping parents. The shared sequences allowed the discovery of ~10,000 SNPs and nearly 1,000 indels, equivalent to a SNP frequency of 0.8 per Kb and an indel frequency of 0.07 per Kb. Over 2,000 of the SNPs are likely to be mappable via the Illumina GoldenGate assay. A subset of 384 SNPs was used to successfully fingerprint a panel of eggplant germplasm, producing a set of informative diversity data. The RAD sequences also included nearly 2,000 putative SSRs, and primer pairs were designed to amplify 1,155 loci.</p> <p>Conclusion</p> <p>The high throughput sequencing of the RAD tags allowed the discovery of a large number of DNA markers, which will prove useful for extending our current knowledge of the genome organization of eggplant, for assisting in marker-aided selection and for carrying out comparative genomic analyses within the <it>Solanaceae </it>family.</p
    corecore