12 research outputs found

    Mathematical modelling of mission-abort policies: a review

    No full text
    This paper reviews works that consider the mathematical modelling of mission-abort policies. In a mission-abort policy (MAP), a valuable, and perhaps vulnerable system performs a mission with two, sometimes conflicting objectives, mission success and system survival, and the purpose of modelling is to determine conditions under which a mission should be aborted. Such problems are important in defence, and emerging in transportation and health management. We classify models by: the nature of the mission and the system; the nature of the return or rescue; type of deterioration model; and the decision objectives. We show that the majority of works consider a model of a one system, one target mission in which the mission is aborted once the hazard of failure reaches a critical level and the operating environment is the same for the outbound and inbound parts of the mission. Typically, the hazard of failure depends on the number of shocks received so far. Our analysis indicates that there has been little modelling development for multiple systems that can multi-task and dependent systems with common-cause failures, for example. We find no evidence that MAPs are used in practice and no works reviewed develop software demonstrators. We think there is considerable scope for modelling applications in transportation (e.g. dynamic train re-scheduling, last-mile logistics) and medical treatments, and MAPs may be more general than the literature that we have reviewed suggests

    Utility-Based Multicriteria Model for Screening Patients under the COVID-19 Pandemic

    No full text
    In this paper, a utility-based multicriteria model is proposed to support the physicians to deal with an important medical decision—the screening decision problem—given the squeeze put on resources due to the COVID-19 pandemic. Since the COVID-19 emerged, the number of patients with an acute respiratory failure has increased in the health units. This chaotic situation has led to a deficiency in health resources. Thus, this study, using the concepts of the multiattribute utility theory (MAUT), puts forward a mathematical model to aid physicians in the screening decision problem. The model is used to generate which of the three alternatives is the best one for where patients with suspected COVID-19 should be treated, namely, an intensive care unit (ICU), a hospital ward, or at home in isolation. Also, a decision information system, called SIDTriagem, is constructed and illustrated to operate the mathematical model proposed

    Decision Model for Allocation of Intensive Care Unit Beds for Suspected COVID-19 Patients under Scarce Resources

    No full text
    This paper puts forward a decision model for allocation of intensive care unit (ICU) beds under scarce resources in healthcare systems during the COVID-19 pandemic. The model is built upon a portfolio selection approach under the concepts of the Utility Theory. A binary integer optimization model is developed in order to find the best allocation for ICU beds, considering candidate patients with suspected/confirmed COVID-19. Experts’ subjective knowledge and prior probabilities are considered to estimate the input data for the proposed model, considering the particular aspects of the decision problem. Since the chances of survival of patients in several scenarios may not be precisely defined due to the inherent subjectivity of such kinds of information, the proposed model works based on imprecise information provided by users. A Monte-Carlo simulation is performed to build a recommendation, and a robustness index is computed for each alternative according to its performance as evidenced by the results of the simulation

    Collaborative Decision Model for Allocating Intensive Care Units Beds with Scarce Resources in Health Systems: A Portfolio Based Approach under Expected Utility Theory and Bayesian Decision Analysis

    No full text
    The COVID-19 pandemic has brought health systems to the brink of collapse in several regions around the world, as the demand for health care has outstripped the capacity of their services, especially regarding intensive care. In this context, health system managers have faced a difficult question: who should be admitted to an intensive care unit (ICU), and who should not? This paper addresses this decision problem using Expected Utility Theory and Bayesian decision analysis. In order to estimate the chances of survival for patients, a structured protocol has been proposed conjointly with physicians, based on the Sequential Organ Failure Assessment (SOFA) score. A portfolio selection approach is proposed to support tackling the ICU allocation problem. A simulation study shows that the proposed approach is more advantageous than other approaches already presented in the literature, with respect to the number of lives saved. The patients’ probabilities of survival inside and outside the ICU are important parameters of the model. However, assessing such probabilities can be a difficult task for health professionals. In order to give due treatment to the imprecise information regarding these probabilities, a Monte Carlo simulation is used to estimate the probabilities of recommending a patient be admitted to the ICU is the most appropriate decision, given the conditions presented. The methodology was implemented in an Information and Decision System called SIDTriagem, which is available online for free. With regards to managerial implications, SIDTriagem has a great potential to help in the response to public health emergencies systems as it facilitates rational decision-making regarding allocating ICU beds when resources are scarce

    Association of Country Income Level With the Characteristics and Outcomes of Critically Ill Patients Hospitalized With Acute Kidney Injury and COVID-19

    No full text
    Introduction: Acute kidney injury (AKI) has been identified as one of the most common and significant problems in hospitalized patients with COVID-19. However, studies examining the relationship between COVID-19 and AKI in low- and low-middle income countries (LLMIC) are lacking. Given that AKI is known to carry a higher mortality rate in these countries, it is important to understand differences in this population. Methods: This prospective, observational study examines the AKI incidence and characteristics of 32,210 patients with COVID-19 from 49 countries across all income levels who were admitted to an intensive care unit during their hospital stay. Results: Among patients with COVID-19 admitted to the intensive care unit, AKI incidence was highest in patients in LLMIC, followed by patients in upper-middle income countries (UMIC) and high-income countries (HIC) (53%, 38%, and 30%, respectively), whereas dialysis rates were lowest among patients with AKI from LLMIC and highest among those from HIC (27% vs. 45%). Patients with AKI in LLMIC had the largest proportion of community-acquired AKI (CA-AKI) and highest rate of in-hospital death (79% vs. 54% in HIC and 66% in UMIC). The association between AKI, being from LLMIC and in-hospital death persisted even after adjusting for disease severity. Conclusions: AKI is a particularly devastating complication of COVID-19 among patients from poorer nations where the gaps in accessibility and quality of healthcare delivery have a major impact on patient outcomes

    Thrombotic and hemorrhagic complications of COVID-19 in adults hospitalized in high-income countries compared with those in adults hospitalized in low- and middle-income countries in an international registry

    No full text
    Background: COVID-19 has been associated with a broad range of thromboembolic, ischemic, and hemorrhagic complications (coagulopathy complications). Most studies have focused on patients with severe disease from high-income countries (HICs). Objectives: The main aims were to compare the frequency of coagulopathy complications in developing countries (low- and middle-income countries [LMICs]) with those in HICs, delineate the frequency across a range of treatment levels, and determine associations with in-hospital mortality. Methods: Adult patients enrolled in an observational, multinational registry, the International Severe Acute Respiratory and Emerging Infections COVID-19 study, between January 1, 2020, and September 15, 2021, met inclusion criteria, including admission to a hospital for laboratory-confirmed, acute COVID-19 and data on complications and survival. The advanced-treatment cohort received care, such as admission to the intensive care unit, mechanical ventilation, or inotropes or vasopressors; the basic-treatment cohort did not receive any of these interventions. Results: The study population included 495,682 patients from 52 countries, with 63% from LMICs and 85% in the basic treatment cohort. The frequency of coagulopathy complications was higher in HICs (0.76%-3.4%) than in LMICs (0.09%-1.22%). Complications were more frequent in the advanced-treatment cohort than in the basic-treatment cohort. Coagulopathy complications were associated with increased in-hospital mortality (odds ratio, 1.58; 95% CI, 1.52-1.64). The increased mortality associated with these complications was higher in LMICs (58.5%) than in HICs (35.4%). After controlling for coagulopathy complications, treatment intensity, and multiple other factors, the mortality was higher among patients in LMICs than among patients in HICs (odds ratio, 1.45; 95% CI, 1.39-1.51). Conclusion: In a large, international registry of patients hospitalized for COVID-19, coagulopathy complications were more frequent in HICs than in LMICs (developing countries). Increased mortality associated with coagulopathy complications was of a greater magnitude among patients in LMICs. Additional research is needed regarding timely diagnosis of and intervention for coagulation derangements associated with COVID-19, particularly for limited-resource settings

    Implementation of Recommendations on the Use of Corticosteroids in Severe COVID-19

    No full text
    Importance: Research diversity and representativeness are paramount in building trust, generating valid biomedical knowledge, and possibly in implementing clinical guidelines. Objectives: To compare variations over time and across World Health Organization (WHO) geographic regions of corticosteroid use for treatment of severe COVID-19; secondary objectives were to evaluate the association between the timing of publication of the RECOVERY (Randomised Evaluation of COVID-19 Therapy) trial (June 2020) and the WHO guidelines for corticosteroids (September 2020) and the temporal trends observed in corticosteroid use by region and to describe the geographic distribution of the recruitment in clinical trials that informed the WHO recommendation. Design, setting, and participants: This prospective cohort study of 434 851 patients was conducted between January 31, 2020, and September 2, 2022, in 63 countries worldwide. The data were collected under the auspices of the International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC)-WHO Clinical Characterisation Protocol for Severe Emerging Infections. Analyses were restricted to patients hospitalized for severe COVID-19 (a subset of the ISARIC data set). Exposure: Corticosteroid use as reported to the ISARIC-WHO Clinical Characterisation Protocol for Severe Emerging Infections. Main outcomes and measures: Number and percentage of patients hospitalized with severe COVID-19 who received corticosteroids by time period and by WHO geographic region. Results: Among 434 851 patients with confirmed severe or critical COVID-19 for whom receipt of corticosteroids could be ascertained (median [IQR] age, 61.0 [48.0-74.0] years; 53.0% male), 174 307 (40.1%) received corticosteroids during the study period. Of the participants in clinical trials that informed the guideline, 91.6% were recruited from the United Kingdom. In all regions, corticosteroid use for severe COVID-19 increased, but this increase corresponded to the timing of the RECOVERY trial (time-interruption coefficient 1.0 [95% CI, 0.9-1.2]) and WHO guideline (time-interruption coefficient 1.9 [95% CI, 1.7-2.0]) publications only in Europe. At the end of the study period, corticosteroid use for treatment of severe COVID-19 was highest in the Americas (5421 of 6095 [88.9%]; 95% CI, 87.7-90.2) and lowest in Africa (31 588 of 185 191 [17.1%]; 95% CI, 16.8-17.3). Conclusions and relevance: The results of this cohort study showed that implementation of the guidelines for use of corticosteroids in the treatment of severe COVID-19 varied geographically. Uptake of corticosteroid treatment was lower in regions with limited clinical trial involvement. Improving research diversity and representativeness may facilitate timely knowledge uptake and guideline implementation

    Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms

    No full text
    Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4 % presented with RS, while 13.6 % had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7 % vs RS: 37.5 %). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1 % vs. RS 32.0 %), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders
    corecore