37 research outputs found

    Repetitive Late Pleistocene soft‐sediment deformation by seismicity‐induced liquefaction in north‐western Lithuania

    Get PDF
    Liquefaction can cause deformation of unconsolidated sediment, but specific processes involved and the trigger mechanisms often remain obscured. This study describes multiple deformed sediment layers in a succession of lacustrine sand, silt and clay deposited during the Marine Isotope Stage 5d in north-western Lithuania. The deformation structures (load casts, pseudonodules, ball-and-pillow structures, broken-up laminae and injections) are embedded in ten separate layers of fine-grained, laterally continuous sediments. Detailed mesoscale sedimentological analyses suggest that each deformation event consisted of numerous successive stages of sediment advection facilitated by liquefaction. Low-permeability fine-grained laminae contributed to localized pore-water pressure build-up and lowering of sediment strength. Erosional top surfaces that truncate layers with soft-sediment deformation structures suggest that at least seven deformation events were separated by successive periods of initial erosion and then uninterrupted deposition in the lake. The most likely trigger of the deformation was recurrent palaeoseismic activity possibly linked to a late glacial isostatic adjustment following the Scandinavian Ice Sheet melting after the Saalian glaciation. This study emphasizes the potential role of seismic processes in shaping the sedimentary record of the intraplate region of north-eastern Europe and contributes to constraining the depth of liquefaction, regardless of the actual trigger mechanism

    Lithological anomalies in a relict coastal dune : geophysical and paleoenvironmental markers

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L09707, doi:10.1029/2007GL029767.Ground exposures of migration surfaces (slipfaces) of a relict Holocene coastal dune along the southeastern Baltic Sea coast provide an ideal opportunity for establishing the causes of prominent reflections on geophysical profiles. High-amplitude reflections on high-resolution ground-penetrating radar (GPR) images correlate well with two major lithological anomalies: 1) paleosols developed on dune slipfaces, and 2) slipfaces consisting of heavy-mineral concentrations (HMCs). Paleosols serve as indicators of dune stability, represent datable chronostratigraphic surfaces, and help reconstruct dune paleo-morphology. HMCs have substantially higher magnetic susceptibility values than background quartz-rich sands and, where they are well-developed, can be also used for spatial correlation. Based on their occurrence at the study site, these enriched horizons likely represent periods of increased wind activity (storminess). Multiple HMCs upwind of paleosol P1 (800–670 cal years BP) likely reflect periods of intensified wind activity along the southeast Baltic region during the Medieval Warm Period.This research was funded by the Ocean and Climate Change Institute and The J. Lamar Worzel Assistant Scientist Fund of the Woods Hole Oceanographic Institution

    Ventės Ragas outcrop and Juodikiai quarry: soft-sediment deformation structures of enigmatic genesis in the Lithuanian Maritime Region

    No full text
    In the western part of Lithuania there are a few outcrops/sites with soft-sediment deformation structures (abbr. SSDS) and other features, possibly emerged during the liquefaction processes. Two of sites – Ventės Ragas outcrop and Juodikiai quarry – are close to the Baltic Sea and the Curonian Lagoon, i.e. they are located in the so-called Lithuanian Maritime Region (Fig. 1). The SSDS observed in the mentioned sites are not developed so well compared with the similar structures in the other localities (see in this book), already investigated in more details, thus, the genesis and age of these structures are still under discussion
    corecore