122 research outputs found

    Data from the LIGO I Science Run

    Get PDF
    The LIGO I Science Run is planned to begin in mid-2002. The characteristics of the data stream, data volumes, data products, and data availability are discussed. The data analysis activities will be undertaken by the LIGO Scientific Collaboration (LSC^2). These activities include operating dedicated on-site pipelines at the LIGO observatories. In addition, a dedicated off-site facility for will be dedicated to melding data from different interferometer datastreams (both LIGO and eventually those of other international projects as part of a network-wide analysis effort). Exploratory university-based research on LIGO data will likely be supported in part by the nascent US computing grid. LIGO Laboratory and the LSC are working on grid computing efforts within the GriPhyN (Grid Physics Network) collaboration research activities

    XSIL: Extensible Scientific Interchange Language

    Get PDF
    We motivate and define the XSIL language as a flexible, hierarchical, extensible transport language for scientific data objects. The entire object may be represented in the file, or there may be metadata in the XSIL file, with a powerful, fault-tolerant linking mechanism to external data. The language is based on XML, and is designed not only for parsing and processing by machines, but also for presentation to humans through web browsers and web-database technology. There is a natural mapping between the elements of the XSIL language and the object model into which they are translated by the parser. As well as common objects (Parameter, Array, Time, Table), we have extended XSIL to include the IGWDFrame, used by gravitational-wave observatories

    LIGO and the opening of a unique observational window on the universe

    Get PDF
    A unique window on the universe opened on September 14, 2015, with direct detection of gravitational waves by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors. This event culminated a half-century effort around the globe to develop terrestrial detectors of adequate sensitivity to achieve this goal. It also happened appropriately only a few months before the centennial of Einstein’s final paper introducing the general theory of relativity. This detection provided the surprising discovery of a coalescing pair of “heavy” black holes (more massive than ≃ 25 M_àč) leading to the formation of a spinning ≃ 62 solar mass black hole. One more binary black-hole detection and a significant candidate event demonstrated that a population of such merging binaries is formed in nature with a broad mass spectrum. This unique observational sample has already provided concrete measurements on the coalescence rates and has allowed us to test the theory of general relativity in the strong-field regime. As this nascent field of gravitational-wave astrophysics is emerging we are looking forward to the detection of binary mergers involving neutron stars and their electromagnetic counterparts, as well as continuous-wave sources, supernovae, a stochastic confusion background of compact-object mergers, known sources detected in unexpected ways, and completely unknown sources

    Extended hierarchical search (EHS) algorithm for detection of gravitational waves from inspiraling compact binaries

    Get PDF
    Pattern matching techniques like matched filtering will be used for online extraction of gravitational wave signals buried inside detector noise. This involves cross correlating the detector output with hundreds of thousands of templates spanning a multi-dimensional parameter space, which is very expensive computationally. A faster implementation algorithm was devised by Mohanty and Dhurandhar [1996] using a hierarchy of templates over the mass parameters, which speeded up the procedure by about 25 to 30 times. We show that a further reduction in computational cost is possible if we extend the hierarchy paradigm to an extra parameter, namely, the time of arrival of the signal. In the first stage, the chirp waveform is cut-off at a relatively low frequency allowing the data to be coarsely sampled leading to cost saving in performing the FFTs. This is possible because most of the signal power is at low frequencies, and therefore the advantage due to hierarchy over masses is not compromised. Results are obtained for spin-less templates up to the second post-Newtonian (2PN) order for a single detector with LIGO I noise power spectral density. We estimate that the gain in computational cost over a flat search is about 100.Comment: 6 pages, 6 EPS figures, uses CQG style iopart.cl

    Plans for the LIGO–TAMA joint search for gravitational wave bursts

    Get PDF
    We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA Collaborations using data collected during February–April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers

    Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

    Get PDF
    Existing coherent network analysis techniques for detecting gravitational-wave bursts simultaneously test data from multiple observatories for consistency with the expected properties of the signals. These techniques assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal, and they may fail in the presence of transient non-stationarities, which are common in real detectors. In order to address this problem we introduce a consistency test that is robust against noise non-stationarities and allows one to distinguish between gravitational-wave bursts and noise transients. This technique does not require any a priori knowledge of the putative burst waveform.Comment: 18 pages, 11 figures; corrected corrupted figur

    Direct searches for a cosmological stochastic gravitational wave background

    Get PDF
    LIGO has completed a series of observations searching for evidence of a stochastic gravitational wave background. There has been no detection to date. However the sensitivity of the observations is approaching the Big Bang nucleosynthesis bound. Future observations will provide information that bounds a number of early Universe models of stochastic gravitational waves

    A Virtual Data Grid for LIGO

    Get PDF
    GriPhyN (Grid Physics Network) is a large US collaboration to build grid services for large physics experiments, one of which is LIGO, a gravitational-wave observatory. This paper explains the physics and computing challenges of LIGO, and the tools that GriPhyN will build to address them. A key component needed to implement the data pipeline is a virtual data service; a system to dynamically create data products requested during the various stages. The data could possibly be already processed in a certain way, it may be in a file on a storage system, it may be cached, or it may need to be created through computation. The full elaboration of this system will al-low complex data pipelines to be set up as virtual data objects, with existing data being transformed in diverse ways

    Optimal combination of signals from co-located gravitational wave interferometers for use in searches for a stochastic background

    Get PDF
    This article derives an optimal (i.e., unbiased, minimum variance) estimator for the pseudo-detector strain for a pair of co-located gravitational wave interferometers (such as the pair of LIGO interferometers at its Hanford Observatory), allowing for possible instrumental correlations between the two detectors. The technique is robust and does not involve any assumptions or approximations regarding the relative strength of gravitational wave signals in the detector pair with respect to other sources of correlated instrumental or environmental noise. An expression is given for the effective power spectral density of the combined noise in the pseudo-detector. This can then be introduced into the standard optimal Wiener filter used to cross-correlate detector data streams in order to obtain an optimal estimate of the stochastic gravitational wave background. In addition, a dual to the optimal estimate of strain is derived. This dual is constructed to contain no gravitational wave signature and can thus be used as on "off-source" measurement to test algorithms used in the "on-source" observation.Comment: 14 pages, 4 figures, submitted to Physical Review D Resubmitted after editing paper in response to referee comments. Removed appendices A, B and edited text accordingly. Improved legibility of figures. Corrected several references. Corrected reference to science run number (S1 vs. S2) in text and figure caption
    • 

    corecore