7 research outputs found

    Efectos del metilfenidato sobre la ansiedad

    Get PDF
    The attention deficit disorder with hyperactivity (ADDH) is a widely recognized disorder of unknown etiology. Methylphenidate administration is one of the most commonly used treatments to improve symptoms associated with ADDH. Although it is generally a well tolerated drug, several secondary effects may occur. In particular, this paper will focus on the effects on anxiety, in humans and experimental animal models. It has been shown that acute administration of methylphenidate in adults reduces anxiety, in both animal models and humans. On the other hand, chronic treatment during early ages (postnatal and young subjects) results in higher anxiety in adults. In some cases this effect appears together with higher susceptibility of drug consumption. Thus, we find that, in the literature, methylphenidate is capable of inducing different and opposite effects. Thus, further experiments would be required to elucidate the mechanisms by which methylphenidate exert its actions.El trastorno por déficit de atención/hiperactividad (TDAH) es un trastorno neurológico ampliamente reconoci- do de etiología desconocida. La administración de metilfenidato es uno de los tratamientos más utilizados para la mejora sintomática del TDAH. Aunque es un medicamento en general muy bien tolerado por los pacientes, existen algunos efec- tos secundarios ajenos a los síntomas de la hiperactividad. En particular, esta revisión se centra en revisar los efectos que la administración aguda o crónica del metilfenidato induce en síntomas de ansiedad en humanos y en modelos animales experimentales. Tanto en modelos animales como en humanos, la administración aguda en adultos tiene un efecto an- siolítico. Por otro lado, en modelos animales, la administración crónica en el período posnatal y adolescentes genera es- tados de ansiedad en el adulto, aumentando, además, en algunos casos, aunque no en todos, la propensión a la drogo- dependencia de otras sustancias. Existe disparidad de resultados y serían necesarios más estudios para elucidar los mecanismos por los cuales el metilfenidato ejerce su acción

    Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons

    Get PDF
    This is a pre-print of an article published in Brain Structure and Function. The final authenticated version is available online at: https://doi.org/10.1007/s00429-018-1763-5In mammals, the extended amygdala is a neural hub for social and emotional information processing. In the rat, the extended amygdala receives inhibitory GABAergic projections from the nucleus incertus (NI) in the pontine tegmentum. NI neurons produce the neuropeptide relaxin-3, which acts via the Gi/o-protein-coupled receptor, RXFP3. A putative role for RXFP3 signalling in regulating social interaction was investigated by assessing the effect of intracerebroventricular infusion of the RXFP3 agonist, RXFP3-A2, on performance in the 3-chamber social interaction paradigm. Central RXFP3-A2, but not vehicle, infusion, disrupted the capacity to discriminate between a familiar and novel conspecific subject, but did not alter differentiation between a conspecific and an inanimate object. Subsequent studies revealed that agonist-infused rats displayed increased phosphoERK(pERK)-immunoreactivity in specific amygdaloid nuclei at 20 min post-infusion, with levels similar to control again after 90 min. In parallel, we used immunoblotting to profile ERK phosphorylation dynamics in whole amygdala after RXFP3-A2 treatment; and multiplex histochemical labelling techniques to reveal that after RXFP3-A2 infusion and social interaction, pERK-immunopositive neurons in amygdala expressed vesicular GABA-transporter mRNA and displayed differential profiles of RXFP3 and oxytocin receptor mRNA. Overall, these findings demonstrate that central relaxin-3/RXFP3 signalling can modulate social recognition in rats via effects within the amygdala and likely interactions with GABA and oxytocin signalling

    Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat

    Get PDF
    Spatial learning and memory processes depend on anatomical and functional interactions between the hippocampus and the entorhinal cortex. A key neurophysiological component of these processes is hippocampal theta rhythm, which can be driven from subcortical areas including the pontine nucleus incertus (NI). The NI contains the largest population of neurons that produce and presumably release the neuropeptide, relaxin-3, which acts via the Gi/o-protein-coupled receptor, relaxin-family peptide 3 receptor (RXFP3). NI activation induces general arousal including hippocampal theta, and inactivation induces impairment of spatial memory acquisition or retrieval. The primary aim of this study was to map the NI/relaxin-3 innervation of the parahippocampal cortex (PHC), including the medial and lateral entorhinal cortex, endopiriform cortex, perirhinal, postrhinal, and ectorhinal cortex, the amygdalohippocampal transition area and posteromedial cortical amygdala. Retrograde tracer injections were placed in different parts of the medial and lateral entorhinal cortex, which produced prominent retrograde labeling in the ipsilateral NI and some labeling in the contralateral NI. Anterograde tracer injections into the NI and immunostaining for relaxin-3 produced fiber labeling in deep layers of all parahippocampal areas and some dispersed fibers in superficial layers. Double-labeling studies revealed that both hippocampal projecting and calcium-binding protein-positive (presumed GABAergic) neurons received a relaxin-3 NI innervation. Some of these fibers also displayed synaptophysin (Syn) immunoreactivity, consistent with the presence of the peptide at synapses; and relaxin-3-positive fibers containing Syn bouton-like staining were frequently observed in contact with hippocampal-projecting or calcium-binding protein-positive neuronal somata and more distal elements. Finally, in situ hybridization studies revealed that entorhinal neurons in the superficial layers, and to a lesser extent in deep layers, contain RXFP3 mRNA. Together, our data support functional actions of the NI/relaxin-3-parahippocampal innervation on processes related to memory, spatial navigation and contextual analysis

    Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory.

    Get PDF
    The medial septum/diagonal band (MS/DB) is a relay region connecting the hypothalamus and brainstem with the hippocampus, and both the MS/DB and dorsal/ventral hippocampus receive strong topographic GABA/peptidergic projections from the nucleus incertus of the pontine tegmentum. The neuropeptide relaxin-3, released by these neurons, is the cognate ligand for a Gi/o-protein-coupled receptor, RXFP3, which is highly expressed within the MS/DB, and both cholinergic and GABAergic neurons in this region of rat brain receive relaxin-3 positive terminals/boutons. Comprehensive in vitro studies have demonstrated that a range of cell signaling pathways can be altered by RXFP3 stimulation, including inhibition of forskolin-activated cAMP levels and activation of ERK phosphorylation. In this study we investigated whether intracerebroventricular (icv) injection of RXFP3-A2, a selective relaxin-3 receptor agonist, altered ERK phosphorylation levels in the MS/DB of adult male rats. In addition, we assessed the neurochemical phenotype of phosphorylated (p) ERK-positive neurons in MS/DB after RXFP3-A2 administration by dual-label immunostaining for pERK and key neuronal markers. RXFP3-A2 injection significantly increased pERK levels in MS/DB, compared to vehicle at 20 and 90 min post-injection. In addition, icv injection of RXFP3-A2 increased the number of cells expressing pERK in the MS/DB after 90 min, with increases detected in cholinergic, but not GABAergic neurons. Moreover, we found that septal cholinergic neurons express RXFP3 and that icv infusions of RXFP3-A2 impaired alternation in a spatial working memory behavioral paradigm. The presence of the receptor and the specific RXFP3-related activation of the MAPK/ERK pathway in MS/DB cholinergic neurons identifies them as a key target of ascending relaxin-3 projections with implications for the acute and chronic inhibition of cholinergic neuron activity/function by relaxin-3/RXFP3 signaling.This research was supported by a predoctoral fellowship (FPI-UJI: PREDOC/2014/35) to HAG; a traineeship fellowship (UJI P1·1A2014-06) to AGA; the FP7-PEOPLE-IRSES PIRSES-GA-2012-318997 NEUREN project to ALG and FEO-B; NHMRC (Australia) project grants (1027522, 1026939) and a Brain and Behavior Research Foundation (USA) NARSAD Independent Investigator Award to ALG; Generalitat Valenciana (AICO/2015/042) project grant and Universitat Jaume I (P1·1A2014-06) project grant to AMS

    Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling

    Get PDF
    This is the pre-peer reviewed version of the following article: Modulation of forebrain function by nucleus incertus and relaxin‐3/RXFP3 signaling, CNS neuroscience & therapeutics, 2018, vol. 24, no 8, p. 694-702, which has been published in final form at https://doi.org/10.1111/cns.12862. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.The nucleus incertus (NI) in the pontine tegmentum sends ascending projections to the midbrain, hypothalamus, amygdala, basal forebrain, hippocampus, and prefrontal cortex, and has a postulated role in modulating several forebrain functions. A substantial population of GABAergic NI neurons expresses the neuropeptide, relaxin‐3, which acts via the Gi/o‐protein‐coupled receptor, RXFP3, present throughout the forebrain target regions. Broad and specific manipulations of these systems by activation or inhibition of the NI or modulating RXFP3 signaling have revealed key insights into the likely influence of the NI/relaxin‐3/RXFP3 system on modalities including arousal, feeding, stress responses, anxiety and addiction, and attention and memory. This range of actions corresponds to a likely impact of NI/(relaxin‐3) projections on multiple integrated circuits, but makes it difficult to draw conclusions about a generalized function for this network. This review will focus on the key physiological process of oscillatory theta rhythm and the neural circuits that promote it during behavioral activation, highlighting the ability of NI and relaxin‐3/RXFP3 signaling systems to modulate these circuits. A better understanding of these mechanisms may provide a way to therapeutically adjust malfunction of forebrain activity present in several pathological conditions

    Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat.

    Get PDF
    Spatial learning and memory processes depend on anatomical and functional interactions between the hippocampus and the entorhinal cortex. A key neurophysiological component of these processes is hippocampal theta rhythm, which can be driven from subcortical areas including the pontine nucleus incertus (NI). The NI contains the largest population of neurons that produce and presumably release the neuropeptide, relaxin-3, which acts via the G i/o -protein-coupled receptor, relaxin-family peptide 3 receptor (RXFP3). NI activation induces general arousal including hippocampal theta, and inactivation induces impairment of spatial memory acquisition or retrieval. The primary aim of this study was to map the NI/relaxin-3 innervation of the parahippocampal cortex (PHC), including the medial and lateral entorhinal cortex, endopiriform cortex, perirhinal, postrhinal, and ectorhinal cortex, the amygdalohippocampal transition area and posteromedial cortical amygdala. Retrograde tracer injections were placed in different parts of the medial and lateral entorhinal cortex, which produced prominent retrograde labeling in the ipsilateral NI and some labeling in the contralateral NI. Anterograde tracer injections into the NI and immunostaining for relaxin-3 produced fiber labeling in deep layers of all parahippocampal areas and some dispersed fibers in superficial layers. Double-labeling studies revealed that both hippocampal projecting and calcium-binding protein-positive (presumed GABAergic) neurons received a relaxin-3 NI innervation. Some of these fibers also displayed synaptophysin (Syn) immunoreactivity, consistent with the presence of the peptide at synapses; and relaxin-3-positive fibers containing Syn bouton-like staining were frequently observed in contact with hippocampal-projecting or calcium-binding protein-positive neuronal somata and more distal elements. Finally, in situ hybridization studies revealed that entorhinal neurons in the superficial layers, and to a lesser extent in deep layers, contain RXFP3 mRNA. Together, our data support functional actions of the NI/relaxin-3-parahippocampal innervation on processes related to memory, spatial navigation and contextual analysis

    Nucleus incertus ablation disrupted conspecific recognition and modified immediate early gene expression patterns in ‘social brain’ circuits of rats

    No full text
    Social interaction involves neural activity in prefrontal cortex, septum, hippocampus, amygdala and hypothalamus. Notably, these areas all receive projections from the nucleus incertus (NI) in the pontine tegmentum. Therefore, we investigated the effect of excitotoxic lesions of NI neurons in adult male, Wistar rats on performance in a social discrimination test, and associated changes in immediate-early gene protein levels. NI was lesioned with quinolinic acid, and after recovery, rats underwent two trials in the 3-chamber test. In the first trial, NI-lesioned and sham-lesioned rats spent longer exploring a conspecific than an inanimate object. By contrast, in the second trial, NI-lesioned rats visited the familiar and novel conspecific chambers equally, whereas sham-lesioned rats spent longer engaging with the novel rat. Quantification of Fos- and Egr-1-immunoreactivity (IR) levels in brain areas implicated in social behaviour, revealed that social encounter and NI lesion produced complex, differential changes. For example, Egr-1-IR was broadly decreased in several amygdala nuclei in NI-lesioned rats relative to sham, but Fos-IR levels were unaltered. In hippocampus, NI-lesioned rats displayed decreased Fos-IR in CA2 and CA3, while Egr-1-IR was increased in the polymorphic dentate gyrus, CA1, CA2 and subiculum of NI-lesioned rats, relative to sham. Social encounter-related Egr-1-IR was also decreased in septum and anterior and lateral hypothalamus of NI-lesioned rats. Overall, these data suggest NI networks can modulate the activity of sensory, emotional and executive brain areas involved in social recognition, with a likely involvement of neuronal Egr-1 activation in amygdala, septum and hypothalamus, and Erg-1 inhibition in hippocampus
    corecore