1,533 research outputs found

    3D Printed Microfluidic Devices

    Get PDF
    3D printing has revolutionized the microfabrication prototyping workflow over the past few years. With the recent improvements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols as a promising alternative to the time consuming, costly and sophisticated traditional cleanroom fabrication. Microfluidic devices have enabled a wide range of biochemical and clinical applications, such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. Using 3D printing fabrication technologies, alteration of the design features is significantly easier than traditional fabrication, enabling agile iterative design and facilitating rapid prototyping. This can make microfluidic technology more accessible to researchers in various fields and accelerates innovation in the field of microfluidics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in 3D printing and its use for various biochemical and biomedical applications

    A Celebration of the Ties That Bind Us: Connections Between Actuarial Science and Mathematical Finance

    Get PDF
    The articles in this volume are contributed by scholars who are not only experts in areas of Actuarial Science (AS) and Mathematical Finance (MF), but also those who present diverse perspectives from both industry and academia. Topics from multiple areas, such as Stochastic Modeling, Credit Risk, Monte Carlo Simulation, and Pension Valuation, among others, that were maybe thought to be the domain of one type of risk manager, are shown time and again to have deep value to other areas of risk management as well. The articles in this collection, in my opinion, contribute techniques, ideas, and overviews of tools that folks in both AS and MF will find useful and interesting to implement in their work. It is also my hope that this collection will inspire future collaboration between those who seek an interdisciplinary approach to risk management

    The Whole Internet: User\u27s Guide and Catalogue

    Get PDF

    LIBEL AND SLANDER-RADIO DEFAMATION-LIABILITY OF BROADCASTING COMPANY FOR DEFAMATORY STATEMENTS MADE OVER ITS FACILITIES

    Get PDF
    During a radio program, a lessee of broadcasting facilities read previously prepared statements regarding a public official which were defamatory per se. In an action for defamation against the broadcasting company, defendant attacked the complaint as insufficient in failing to allege negligence. Held, the allegation of negligence is essential, but the complaint was sufficient. Kelly v. Hoffman, (N.J. 1948) 61 A. (2d) 143

    Consumer City

    Get PDF
    Urban economics has traditionally viewed cities as having advantages in production and disadvantages in consumption. We argue that the role of urban density in facilitating consumption is extremely important and understudied. As firms become more mobile, the success of cities hinges more and more on cities' role as centers of consumption. Empirically, we find that high amenity cities have grown faster than low amenity cities. Urban rents have gone up faster than urban wages, suggesting that the demand for living in cities has risen for reasons beyond rising wages. The rise of reverse commuting suggest the same consumer city phenomena.

    Ground state energy and magnetization curve of a frustrated magnetic system from real-time evolution on a digital quantum processor

    Full text link
    Models of interacting many-body quantum systems that may realize new exotic phases of matter, notably quantum spin liquids, are challenging to study using even state-of-the-art classical methods such as tensor network simulations. Quantum computing provides a promising route for overcoming these difficulties to find ground states, dynamics, and more. In this paper, we argue that recently developed hybrid quantum-classical algorithms based on real-time evolution are promising methods for solving a particularly important model in the search for spin liquids, the antiferromagnetic Heisenberg model on the two-dimensional kagome lattice. We show how to construct efficient quantum circuits to implement time evolution for the model and to evaluate key observables on the quantum computer, and we argue that the method has favorable scaling with increasing system size. We then restrict to a 12-spin star plaquette from the kagome lattice and a related 8-spin system, and we give an empirical demonstration on these small systems that the hybrid algorithms can efficiently find the ground state energy and the magnetization curve. For these demonstrations, we use four levels of approximation: exact state vectors, exact state vectors with statistical noise from sampling, noisy classical emulators, and (for the 8-spin system only) real quantum hardware, specifically the Quantinuum H1-1 processor; for the noisy simulations, we also employ error mitigation strategies based on the symmetries of the Hamiltonian. Our results strongly suggest that these hybrid algorithms present a promising direction for resolving important unsolved problems in condensed matter theory and beyond.Comment: 29 pages, 22 figure
    corecore