48,897 research outputs found
Measuring Space-Time Geometry over the Ages
Theorists are often told to express things in the "observational plane". One
can do this for space-time geometry, considering "visual" observations of
matter in our universe by a single observer over time, with no assumptions
about isometries, initial conditions, nor any particular relation between
matter and geometry, such as Einstein's equations. Using observables as
coordinates naturally leads to a parametrization of space-time geometry in
terms of other observables, which in turn prescribes an observational program
to measure the geometry. Under the assumption of vorticity-free matter flow we
describe this observational program, which includes measurements of
gravitational lensing, proper motion, and redshift drift. Only 15% of the
curvature information can be extracted without long time baseline observations,
and this increases to 35% with observations that will take decades. The rest
would likely require centuries of observations. The formalism developed is
exact, non-perturbative, and more general than the usual cosmological analysis.Comment: Originally written for the Gravity Research Foundation 2012 Awards
for Essays on Gravitation and received Honorable Mentio
Bose-Einstein condensation in complex networks
The evolution of many complex systems, including the world wide web, business
and citation networks is encoded in the dynamic web describing the interactions
between the system's constituents. Despite their irreversible and
non-equilibrium nature these networks follow Bose statistics and can undergo
Bose-Einstein condensation. Addressing the dynamical properties of these
non-equilibrium systems within the framework of equilibrium quantum gases
predicts that the 'first-mover-advantage', 'fit-get-rich' and
'winner-takes-all' phenomena observed in competitive systems are
thermodynamically distinct phases of the underlying evolving networks
Search for variable gamma-ray emission from the Galactic plane in the Fermi data
High-energy gamma-ray emission from the Galactic plane above ~100 MeV is
composed of three main contributions: diffuse emission from cosmic ray
interactions in the interstellar medium, emission from extended sources, such
as supernova remnants and pulsar wind nebulae, and emission from isolated
compact source populations. The diffuse emission and emission from the extended
sources provide the dominant contribution to the flux almost everywhere in the
inner Galaxy, preventing the detection of isolated compact sources. In spite of
this difficulty, compact sources in the Galactic plane can be singled out based
on the variability properties of their gamma-ray emission. Our aim is to find
sources in the Fermi data that show long-term variability. We performed a
systematic study of the emission variability from the Galactic plane, by
constructing the variability maps. We find that emission from several
directions along the Galactic plane is significantly variable on a time scale
of months. These directions include, in addition to known variable Galactic
sources and background blazars, the Galactic ridge region at positive Galactic
longitudes and several regions containing young pulsars. We argue that
variability on the time scale of months may be common to pulsars, originating
from the inner parts of pulsar wind nebulae, similarly to what is observed in
the Crab pulsar.Comment: 4 pages, 4 figures, accepted to Astronomy & Astrophysic
Tomonaga-Luttinger physics in electronic quantum circuits
In one-dimensional conductors, interactions result in correlated electronic
systems. At low energy, a hallmark signature of the so-called
Tomonaga-Luttinger liquids (TLL) is the universal conductance curve predicted
in presence of an impurity. A seemingly different topic is the quantum laws of
electricity, when distinct quantum conductors are assembled in a circuit. In
particular, the conductances are suppressed at low energy, a phenomenon called
dynamical Coulomb blockade (DCB). Here we investigate the conductance of
mesoscopic circuits constituted by a short single-channel quantum conductor in
series with a resistance, and demonstrate a proposed link to TLL physics. We
reformulate and establish experimentally a recently derived phenomenological
expression for the conductance using a wide range of circuits, including carbon
nanotube data obtained elsewhere. By confronting both conductance data and
phenomenological expression with the universal TLL curve, we demonstrate
experimentally the predicted mapping between DCB and the transport across a TLL
with an impurity.Comment: 9p,6fig+SI; to be published in nature comm; v2: mapping extended to
finite range interactions, added discussion and SI material, added reference
Status of sonic boom methodology and understanding
In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given
Non-invasive vibrational mode spectroscopy of ion Coulomb crystals through resonant collective coupling to an optical cavity field
We report on a novel non-invasive method to determine the normal mode
frequencies of ion Coulomb crystals in traps based on the resonance enhanced
collective coupling between the electronic states of the ions and an optical
cavity field at the single photon level. Excitations of the normal modes are
observed through a Doppler broadening of the resonance. An excellent agreement
with the predictions of a zero-temperature uniformly charged liquid plasma
model is found. The technique opens up for investigations of the heating and
damping of cold plasma modes, as well as the coupling between them.Comment: 4 pages, 4 figure
Study of the decay B^0→D^(*+)ωπ^-
We report on a study of the decay B^0→D^(*+)ωπ^- with the BABAR detector at the PEP-II B-factory at the Stanford Linear Accelerator Center. Based on a sample of 232×10^6 BB decays, we measure the branching fraction B(B^0→D^(*+)ωπ^-)=(2.88±0.21(stat.)±0.31(syst.))×10^(-3). We study the invariant mass spectrum of the ωπ^- system in this decay. This spectrum is in good agreement with expectations based on factorization and the measured spectrum in τ-→ωπ-ν_τ. We also measure the polarization of the D^(*+) as a function of the ωπ^- mass. In the mass region 1.1 to 1.9 GeV we measure the fraction of longitudinal polarization of the D^(*+) to be ΓL/Γ=0.654±0.042(stat.)±0.016(syst.). This is in agreement with the expectations from heavy-quark effective theory and factorization assuming that the decay proceeds as B^(-0)→D^(*+)ρ(1450)-, ρ(1450)^-→ωπ^-
X-ray Localization of the Globular Cluster G1 with XMM-Newton
We present an accurate X-ray position of the massive globular cluster G1 by
using XMM-Newton and the Hubble Space Telescope (HST). The X-ray emission of G1
has been detected recently with XMM-Newton. There are two possibilities for the
origin of the X-ray emission. It can be either due to accretion of the central
intermediate-mass black hole, or by ordinary low-mass X-ray binaries. The
precise location of the X-ray emission might distinguish between these two
scenarios. By refining the astrometry of the XMM-Newton and HST data, we
reduced the XMM-Newton error circle to 1.5". Despite the smaller error circle,
the precision is not sufficient to distinguish an intermediate-mass black hole
and luminous low-mass X-ray binaries. This result, however, suggests that
future Chandra observations may reveal the origin of the X-ray emission.Comment: 4 pages, 2 figures; accepted for publication in Ap
Compressive Inverse Scattering II. SISO Measurements with Born scatterers
Inverse scattering methods capable of compressive imaging are proposed and
analyzed. The methods employ randomly and repeatedly (multiple-shot) the
single-input-single-output (SISO) measurements in which the probe frequencies,
the incident and the sampling directions are related in a precise way and are
capable of recovering exactly scatterers of sufficiently low sparsity.
For point targets, various sampling techniques are proposed to transform the
scattering matrix into the random Fourier matrix. The results for point targets
are then extended to the case of localized extended targets by interpolating
from grid points. In particular, an explicit error bound is derived for the
piece-wise constant interpolation which is shown to be a practical way of
discretizing localized extended targets and enabling the compressed sensing
techniques.
For distributed extended targets, the Littlewood-Paley basis is used in
analysis. A specially designed sampling scheme then transforms the scattering
matrix into a block-diagonal matrix with each block being the random Fourier
matrix corresponding to one of the multiple dyadic scales of the extended
target. In other words by the Littlewood-Paley basis and the proposed sampling
scheme the different dyadic scales of the target are decoupled and therefore
can be reconstructed scale-by-scale by the proposed method. Moreover, with
probes of any single frequency \om the coefficients in the Littlewood-Paley
expansion for scales up to \om/(2\pi) can be exactly recovered.Comment: Add a new section (Section 3) on localized extended target
- …
