106 research outputs found

    Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold

    Get PDF
    AbstractBackground: The predominant mechanism of antibiotic resistance employed by pathogenic bacteria against the clinically used aminoglycosides is chemical modification of the drug. The detoxification reactions are catalyzed by enzymes that promote either the phosphorylation, adenylation or acetylation of aminoglycosides. Structural studies of these aminoglycoside-modifying enzymes may assist in the development of therapeutic agents that could circumvent antibiotic resistance. In addition, such studies may shed light on the development of antibiotic resistance and the evolution of different enzyme classes.Results: The crystal structure of the aminoglycoside-modifying enzyme aminoglycoside 6′-N-acetyltransferase type Ii (AAC(6′)-Ii) in complex with the cofactor acetyl coenzyme A has been determined at 2.7 Å resolution. The structure establishes that this acetyltransferase belongs to the GCN5-related N-acetyltransferase superfamily, which includes such enzymes as the histone acetyltransferases GCN5 and Hat1.Conclusions: Comparison of the AAC(6′)-Ii structure with the crystal structures of two other members of this superfamily, Serratia marcescens aminoglycoside 3-N-acetyltransferase and yeast histone acetyltransferase Hat1, reveals that of the 84 residues that are structurally similar, only three are conserved and none can be implicated as catalytic residues. Despite the negligible sequence identity, functional studies show that AAC(6′)-Ii possesses protein acetylation activity. Thus, AAC(6′)-Ii is both a structural and functional homolog of the GCN5-related histone acetyltransferases

    Bisphosphoglycerate mutase deficiency protects against cerebral malaria and severe malaria-induced anemia

    Get PDF
    The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host’s stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target

    The Substrate-Bound Crystal Structure of a Baeyer–Villiger Monooxygenase Exhibits a Criegee-like Conformation

    Get PDF
    The Baeyer\u2013Villiger monooxygenases (BVMOs) are a family of bacterial flavoproteins that catalyze the synthetically useful Baeyer\u2013Villiger oxidation reaction. This involves the conversion of ketones into esters or cyclic ketones into lactones by introducing an oxygen atom adjacent to the carbonyl group. The BVMOs offer exquisite regio- and enantiospecificity while acting on a wide range of substrates. They use only NADPH and oxygen as cosubstrates, and produce only NADP+ and water as byproducts, making them environmentally attractive for industrial purposes. Here, we report the first crystal structure of a BVMO, cyclohexanone monooxygenase (CHMO) from Rhodococcus sp. HI-31 in complex with its substrate, cyclohexanone, as well as NADP+ and FAD, to 2.4 \uc5 resolution. This structure shows a drastic rotation of the NADP+ cofactor in comparison to previously reported NADP+-bound structures, as the nicotinamide moiety is no longer positioned above the flavin ring. Instead, the substrate, cyclohexanone, is found at this location, in an appropriate position for the formation of the Criegee intermediate. The rotation of NADP+ permits the substrate to gain access to the reactive flavin peroxyanion intermediate while preventing it from diffusing out of the active site. The structure thus reveals the conformation of the enzyme during the key catalytic step. CHMO is proposed to undergo a series of conformational changes to gradually move the substrate from the solvent, via binding in a solvent excluded pocket that dictates the enzyme\u2019s chemospecificity, to a location above the flavin\u2013peroxide adduct where catalysis occurs.Peer reviewed: YesNRC publication: Ye

    Crystal Structures of Two Aminoglycoside Kinases Bound with a Eukaryotic Protein Kinase Inhibitor

    Get PDF
    Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3′)-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3′)-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eurkaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    The nature and role of oxidation state dependent conformational differences in cytochrome c

    No full text
    The objective of the work described in this thesis was to study the nature and role of conformational differences between the oxidation states of cytochrome c. Using x-ray crystallographic techniques, the oxidized form of yeast iso-l-cytochrome c was solved and compared to the previously determined reduced state. The following differences between the oxidation states were identified. Three segments of polypeptide chain, located for the most part on the Met80 side of the protein, were shown to display an increase in mobility in the oxidized state. A conserved internal water molecule, Wat166, was observed to shift 1.7 A towards the heme iron atom and reorient its dipole moment in the oxidized state. As part of this movement several hydrogen bonds were broken including the interaction between Tyr67 OH and the Met80 SD heme ligand. Finally, differences between the two oxidation states were also observed for the conformation of the pyrrole A propionate and its associated hydrogen bond network, the distortion of the porphyrin ring plane, and the orientation of the imidazole plane of the His18 ligand. In order to assess the function of the observed conformational differences between the two oxidation states of cytochrome c, the three dimensional structures of five mutants (N52A, N521,Y67F, N52I-Y67F and 175M) were determined, of which three were completed in both oxidation states. Correlation of wild-type and variant protein structures with functional studies suggested that Wat166 was a central feature in oxidation state dependent differences, and three roles for this water molecule could be identified. First, the oxidation state dependent positioning and orientation of Wat166 appears to be particularly important for modulating the interaction between Tyr67 OH and Met80 SD. This hydrogen bond was shown to influence the electron withdrawing power of the Met80 ligand and therefore is a factor in controlling the midpoint reduction potential of cytochrome c. Secondly, the presence of Wat166 is necessary to maintain the spatial and hydrogen bonding relationships between residues in this region of the protein. Finally, Wat166 also appears to mediate the oxidation state dependent flexibility of selected polypeptide chain segments. The biological function of this phenomenon is still unclear, but our results suggest that it might play a role in interactions between cytochrome c and its redox partners. In conclusion, the work described in this thesis gives insight into the structure-function relationships in cytochrome c and provides a basis for future studies aimed at understanding the mechanism of electron transfer carried out by this protein.Medicine, Faculty ofBiochemistry and Molecular Biology, Department ofGraduat

    Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance

    Get PDF
    Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides ineffective. The most widely disseminated means of resistance to this class of antibiotics is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two principal strategies to overcoming the effects of AMEs. The first approach involves the design of novel aminoglycosides that can evade modification. Although this strategy has yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in the long term. The second approach entails the development of molecules that interfere with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Although such a molecule has yet to enter clinical development, the search for AME inhibitors has been greatly facilitated by the wealth of structural information amassed in recent years. In particular, aminoglycoside phosphotransferases or kinases (APHs) have been studied extensively and crystal structures of a number of APHs with diverse regiospecificity and substrate specificity have been elucidated. In this review, we present a comprehensive overview of the available APH structures and recent progress in APH inhibitor development, with a focus on the structure-guided strategies

    Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry

    No full text
    The misuse of antibiotics has selected for bacteria that have evolved mechanisms for evading the effects of these drugs. For aminoglycosides, a group of clinically important bactericidal antibiotics that target the A-site of the 16S ribosomal RNA, the most common mode of resistance is enzyme-catalyzed chemical modification of the drug. While aminoglycosides are structurally diverse, a single enzyme can confer resistance to many of these antibiotics. For example, the aminoglycoside kinase APH(3′)-IIIa, produced by pathogenic Gram-positive bacteria such as enterococci and staphylococci, is capable of detoxifying at least 10 distinct aminoglycosides. Here we describe the crystal structures of APH(3′)-IIIa in complex with ADP and kanamycin A or neomycin B. These structures reveal that the basis for this enzyme’s substrate promiscuity is the presence of two alternative subsites in the antibiotic binding pocket. Furthermore, comparison between the A-site of the bacterial ribosome and APH(3′)-IIIa shows that mimicry is the second major factor in dictating the substrate spectrum of APH(3′)-IIIa. These results suggest a potential strategy for drug design aimed at circumventing antibiotic resistance
    corecore