71,077 research outputs found
Binary central stars of planetary nebulae
This paper reviews our knowledge on binary central stars of planetary nebulae
and presents some personal opinions regarding their evolution. Three types of
interactions are distinguished: type I, where the binary companion induces the
mass loss; type II, where it shapes the mass loss but does not enhance it; type
III, where a wide orbit causes the centre of mass to move, leading to a spiral
embedded in the wind. Surveys for binary central stars are discussed, and the
separations are compared to the distribution for binary post-AGB stars. The
effect of close binary evolution on nebular morphology is discussed.
Post-common-envelope binaries are surrounded by thin, expanding disks, expelled
in the orbital plane. Wider binaries give rise to much thicker expanding torii.
Type I binary evolution predicts a wide distribution of masses of central
stars, skewed towards low masses. Comparison with observed mass distributions
suggests that this is unlikely to be the only channel leading to the formation
of a planetary nebula. A new sample of compact Bulge nebulae shows about 40% of
nebulae with binary-induced morphologies.Comment: Invited review, in 'Evolution and chemistry of symbiotic stars and
related objects', Wierzba, August 2006. To appear in Baltic Astronom
The evolution of the Mira variable R Hydrae
The Mira variable R Hydrae is well known for its declining period, which Wood
& Zarro (1981) attributed to a possible recent thermal pulse. Here we
investigate the long-term period evolution, covering 340 years, going back to
its discovery in AD 1662. Wavelets are used to determine both the period and
semi-amplitude. We show that the period decreased linearly between 1770 and
1950; since 1950 the period has stabilized at 385 days. The semi-amplitude
closely follows the period evolution. Detailed analysis of the oldest data
shows that before 1770 the period was about 495 days. We find no evidence for
an increasing period during this time as found by Wood & Zarro. IRAS data shows
that the mass loss dropped dramatically around AD 1750. The decline agrees with
the mass-loss formalism from Vassiliadis & Wood, but is much larger than
predicted by the Bloecker mass-loss law. An outer detached IRAS shell suggests
that R Hya has experienced such mass-loss interruptions before. The period
evolution can be explained by a thermal pulse occuring around AD 1600, or by an
non-linear instability leading to an internal relaxation of the stellar
structure. The elapsed time between the mass-loss decline giving rise to the
outer detached shell, and the recent event, of approximately 5000 yr suggests
that only one of these events could be due to a thermal pulse. Further
monitoring of R Hya is recommended, as both models make strong predictions for
the future period evolution. R Hya-type events, on time scales of 10^2-10^3 yr,
could provide part of the explanation for the rings seen around some AGB and
post-AGB stars.Comment: 13 pages. MNRAS, accepted for publicatio
Symmetry transformations in Batalin-Vilkovisky formalism
This short note is closely related to Sen-Zwiebach paper on gauge
transformations in Batalin-Vilkovisky theory (hep-th 9309027). We formulate
some conditions of physical equivalence of solutions to the quantum master
equation and use these conditions to give a very transparent analysis of
symmetry transformations in BV-approach. We prove that in some sense every
quantum observable (i.e. every even function obeying
) determines a symmetry of the theory with the action
functional satisfying quantum master equation \endComment: 3 page
- âŠ