91 research outputs found

    Complete Genome Sequence of Corynebacterium camporealensis DSM 44610, Isolated from the Milk of a Manchega Sheep with Subclinical Mastitis

    Get PDF
    Rückert C, Albersmeier A, Winkler A, Tauch A. Complete Genome Sequence of Corynebacterium camporealensis DSM 44610, Isolated from the Milk of a Manchega Sheep with Subclinical Mastitis. Genome announcements. 2015;3(3): e00572-15.Corynebacterium camporealensis has been isolated in pure culture from milk samples of dairy sheep affected by subclinical mastitis. The complete genome sequence of the type strain DSM 44610, recovered from milk of a Manchega sheep, comprises 2,451,810 bp with a mean G+C content of 59.41% and 2,249 protein-coding genes

    The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules

    Get PDF
    Background: Regulation of sulphur metabolism in Corynebacterium glutamicum ATCC 13032 has been studied intensively in the last few years, due to its industrial as well as scientific importance. Previously, the gene cg0156 was shown to belong to the regulon of McbR, a global transcriptional repressor of sulphur metabolism in C. glutamicum. This gene encodes a putative ROK-type regulator, a paralogue of the activator of sulphonate utilisation, SsuR. Therefore, it is an interesting candidate for study to further the understanding of the regulation of sulphur metabolism in C. glutamicum. Results: Deletion of cg0156, now designated cysR, results in the inability of the mutant to utilise sulphate and aliphatic sulphonates. DNA microarray hybridisations revealed 49 genes with significantly increased and 48 with decreased transcript levels in presence of the native CysR compared to a cysR deletion mutant. Among the genes positively controlled by CysR were the gene cluster involved in sulphate reduction, fpr2 cysIXHDNYZ, and ssuR. Gel retardation experiments demonstrated that binding of CysR to DNA depends in vitro on the presence of either O-acetyl-L-serine or O-acetyl-L-homoserine. Mapping of the transcription start points of five transcription units helped to identify a 10 bp inverted repeat as the possible CysR binding site. Subsequent in vivo tests proved this motif to be necessary for CysR-dependent transcriptional regulation. Conclusion: CysR acts as the functional analogue of the unrelated LysR-type regulator CysB from Escherichia coli, controlling sulphide production in response to acceptor availability. In both bacteria, gene duplication events seem to have taken place which resulted in the evolution of dedicated regulators for the control of sulphonate utilisation. The striking convergent evolution of network topology indicates the strong selective pressure to control the metabolism of the essential but often toxic sulphur-containing (bio-)molecules

    Complete Genome Sequence of Corynebacterium ureicelerivorans DSM 45051, a Lipophilic and Urea-Splitting Isolate from the Blood Culture of a Septicemia Patient

    Get PDF
    Tippelt A, Albersmeier A, Brinkrolf K, et al. Complete Genome Sequence of Corynebacterium ureicelerivorans DSM 45051, a Lipophilic and Urea-Splitting Isolate from the Blood Culture of a Septicemia Patient. Genome announcements. 2014;2(6).: Corynebacterium ureicelerivorans is an opportunistic pathogen with a lipophilic lifestyle and an exceptionally high urease activity. The genome sequence of the type strain revealed that lipophilism is caused by the lack of a fatty acid synthase gene. The ureABCEFGD genes are similar to the urease gene region of Corynebacterium glucuronolyticum

    Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction

    Get PDF
    Rückert C, Koch DJ, Rey DA, et al. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics. 2005;6(1): 121.Background: Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. Results: The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of the extended cluster are conserved in 11 of 17 completely sequenced members of the Actinomycetales. Conclusion: The set of C. glutamicum genes involved in assimilatory model organisms E. coli and B. subtilis is used by members of this order, providing the basis for further biochemical studies.sulphate reduction was identified and four novel genes involved in this pathway were found. The high degree of conservation of this cluster among the Actinomycetales supports the hypothesis that a different metabolic pathway for the reduction of inorganic sulphur compounds than that known from the well-studied model organisms E. coli and B. subtilis is used by members of this order, providing the basis for further biochemical studies

    Genome sequence of the squalene-degrading bacterium Corynebacterium terpenotabidum type strain Y-11T (= DSM 44721T)

    Get PDF
    Rückert C, Albersmeier A, Al-Dilaimi A, et al. Genome sequence of the squalene-degrading bacterium Corynebacterium terpenotabidum type strain Y-11T (= DSM 44721T). Standards in Genomic Sciences. 2013;9(3):505-513.Corynebacterium terpenotabidum Takeuchi et. al 1999 is a member of the genus Corynebacterium, which contains Gram-positive and non-spore forming bacteria with a high G+C content. C. terpenotabidum was isolated from soil based on its ability to degrade squalene and belongs to the aerobic and non-hemolytic Corynebacteria. It displays tolerance to salts (up to 8%) and is related to Corynebacterium variabile involved in cheese ripening. As this is a type strain of Corynebacterium, this project describing the 2.75 Mbp long chromosome with its 2,369 protein-coding and 72 RNA genes will aid the Genomic Encyclopedia of Bacteria and Archaea project

    High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome

    Get PDF
    Shah A, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman J. High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution. 2016;16(6):5718-5727.Despite recent advances in high-throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club-legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired-end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild-caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high-throughput sequencing and graph-based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes

    Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction

    Get PDF
    BACKGROUND: Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. RESULTS: The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of the extended cluster are conserved in 11 of 17 completely sequenced members of the Actinomycetales. CONCLUSION: The set of C. glutamicum genes involved in assimilatory sulphate reduction was identified and four novel genes involved in this pathway were found. The high degree of conservation of this cluster among the Actinomycetales supports the hypothesis that a different metabolic pathway for the reduction of inorganic sulphur compounds than that known from the well-studied model organisms E. coli and B. subtilis is used by members of this order, providing the basis for further biochemical studies

    High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome

    Get PDF
    Shah A, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman J. High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecology and Evolution. 2016;16(6):5718-5727.Despite recent advances in high-throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club-legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired-end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild-caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high-throughput sequencing and graph-based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes

    Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant

    Get PDF
    Bremges A, Maus I, Belmann P, et al. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience. 2015;4(1): 33.Background The production of biogas takes place under anaerobic conditions and involves microbial decomposition of organic matter. Most of the participating microbes are still unknown and non-cultivable. Accordingly, shotgun metagenome sequencing currently is the method of choice to obtain insights into community composition and the genetic repertoire. Findings Here, we report on the deeply sequenced metagenome and metatranscriptome of a complex biogas-producing microbial community from an agricultural production-scale biogas plant. We assembled the metagenome and, as an example application, show that we reconstructed most genes involved in the methane metabolism, a key pathway involving methanogenesis performed by methanogenic Archaea. This result indicates that there is sufficient sequencing coverage for most downstream analyses. Conclusions Sequenced at least one order of magnitude deeper than previous studies, our metagenome data will enable new insights into community composition and the genetic potential of important community members. Moreover, mapping of transcripts to reconstructed genome sequences will enable the identification of active metabolic pathways in target organisms

    Genome sequence of the soil bacterium Corynebacterium callunae type strain DSM 20147T

    Get PDF
    Persicke M, Albersmeier A, Bednarz H, Niehaus K, Kalinowski J, Rückert C. Genome sequence of the soil bacterium Corynebacterium callunae type strain DSM 20147T. Standards in Genomic Sciences. 2015;10(1): 5.Abstract Corynebacterium callunae DSM 20147T is a member of the genus Corynebacterium which contains Gram-positive and non-spore forming bacteria with a high G + C content. C. callunae was isolated during a screening for L-glutamic acid producing bacteria and belongs to the aerobic and non-haemolytic corynebacteria. As this is a type strain in a subgroup of industrial relevant bacteria for many of which there are also complete genome sequence available, knowledge of the complete genome sequence might enable genome comparisons to identify production relevant genetic loci. This project, describing the 2.84 Mbp long chromosome and the two plasmids, pCC1 (4.11 kbp) and pCC2 (85.02 kbp), with their 2,647 protein-coding and 82 RNA genes, will aid the Genomic Encyclopedia of Bacteria and Archaea project
    • …
    corecore