18 research outputs found

    The unbinding transition of mixed fluid membranes

    Full text link
    A phenomenological model for the unbinding transition of multi-component fluid membranes is proposed, where the unbinding transition is described using a theory analogous to Flory-Huggins theory for polymers. The coupling between the lateral phase separation of inclusion molecules and the membrane-substrate distance explains the phase coexistence between two unbound phases as observed in recent experiments by Marx et al. [Phys. Rev. Lett. 88, 138102 (2002)]. Bellow a critical end-point temperature, we find that the unbinding transition becomes first-order for multi-component membranes.Comment: 7 pages, 3 eps figure

    Electrostatic Interactions of Asymmetrically Charged Membranes

    Full text link
    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged and planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict - for any ratio of the charges on the surfaces - that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte

    Adhesion-induced phase separation of multiple species of membrane junctions

    Full text link
    A theory is presented for the membrane junction separation induced by the adhesion between two biomimetic membranes that contain two different types of anchored junctions (receptor/ligand complexes). The analysis shows that several mechanisms contribute to the membrane junction separation. These mechanisms include (i) the height difference between type-1 and type-2 junctions is the main factor which drives the junction separation, (ii) when type-1 and type-2 junctions have different rigidities against stretch and compression, the ``softer'' junctions are the ``favored'' species, and the aggregation of the softer junction can occur, (iii) the elasticity of the membranes mediates a non-local interaction between the junctions, (iv) the thermally activated shape fluctuations of the membranes also contribute to the junction separation by inducing another non-local interaction between the junctions and renormalizing the binding energy of the junctions. The combined effect of these mechanisms is that when junction separation occurs, the system separates into two domains with different relative and total junction densities.Comment: 23 pages, 6 figure

    Rupture of multiple parallel molecular bonds under dynamic loading

    Full text link
    Biological adhesion often involves several pairs of specific receptor-ligand molecules. Using rate equations, we study theoretically the rupture of such multiple parallel bonds under dynamic loading assisted by thermal activation. For a simple generic type of cooperativity, both the rupture time and force exhibit several different scaling regimes. The dependence of the rupture force on the number of bonds is predicted to be either linear, like a square root or logarithmic.Comment: 8 pages, 2 figure

    Dynamic phase separation of fluid membranes with rigid inclusions

    Full text link
    Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but also that multi-body interactions cannot be neglected. In this article, it is shown numerically that shape fluctuations indeed lead to the dynamic separation of the membrane into phases with different inclusion concentrations. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions aggregate at very small inclusion concentrations and for relatively small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure

    Swelling behavior and viscoelasticity of ultrathin grafted hyaluronic acid films

    No full text
    PACS. 36.20.Ey Conformation (statistics and dynamics) - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 83.80.Lz Biological materials: blood, collagen, wood, food, etc.,

    Force spectroscopy on adhesive vesicles

    No full text
    We propose a method to measure weak point forces exerted on giant vesicles adhering to solid surfaces by submicron pinning centers under conditions of thermal equilibrium. The method is based on the analysis of the shape of the contact line between vesicle and substrate using reflection interference contrast microscopy. Force levels below one pN could be measured, considerably below those accessible to available force probes. We illustrate the procedure with a study of the adhesion of giant vesicles adhering to a supported membrane by biotin-streptavidin-biotin linkages

    Alloplastischer Hüft- und Kniegelenkersatz mit der Durchsteckprothese

    No full text
    corecore