1,939 research outputs found
Greedy Selfish Network Creation
We introduce and analyze greedy equilibria (GE) for the well-known model of
selfish network creation by Fabrikant et al.[PODC'03]. GE are interesting for
two reasons: (1) they model outcomes found by agents which prefer smooth
adaptations over radical strategy-changes, (2) GE are outcomes found by agents
which do not have enough computational resources to play optimally. In the
model of Fabrikant et al. agents correspond to Internet Service Providers which
buy network links to improve their quality of network usage. It is known that
computing a best response in this model is NP-hard. Hence, poly-time agents are
likely not to play optimally. But how good are networks created by such agents?
We answer this question for very simple agents. Quite surprisingly, naive
greedy play suffices to create remarkably stable networks. Specifically, we
show that in the SUM version, where agents attempt to minimize their average
distance to all other agents, GE capture Nash equilibria (NE) on trees and that
any GE is in 3-approximate NE on general networks. For the latter we also
provide a lower bound of 3/2 on the approximation ratio. For the MAX version,
where agents attempt to minimize their maximum distance, we show that any
GE-star is in 2-approximate NE and any GE-tree having larger diameter is in
6/5-approximate NE. Both bounds are tight. We contrast these positive results
by providing a linear lower bound on the approximation ratio for the MAX
version on general networks in GE. This result implies a locality gap of
for the metric min-max facility location problem, where n is the
number of clients.Comment: 28 pages, 8 figures. An extended abstract of this work was accepted
at WINE'1
EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud
Cloud computing has become more popular in provision of computing resources
under virtual machine (VM) abstraction for high performance computing (HPC)
users to run their applications. A HPC cloud is such cloud computing
environment. One of challenges of energy efficient resource allocation for VMs
in HPC cloud is tradeoff between minimizing total energy consumption of
physical machines (PMs) and satisfying Quality of Service (e.g. performance).
On one hand, cloud providers want to maximize their profit by reducing the
power cost (e.g. using the smallest number of running PMs). On the other hand,
cloud customers (users) want highest performance for their applications. In
this paper, we focus on the scenario that scheduler does not know global
information about user jobs and user applications in the future. Users will
request shortterm resources at fixed start times and non interrupted durations.
We then propose a new allocation heuristic (named Energy-aware and Performance
per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to
choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS
per Watt). Using information from Feitelson's Parallel Workload Archive to
model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on
heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF
can reduce significant total energy consumption in comparison with state of the
art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced
Computing and Applications, Journal of Science and Technology, Vietnamese
Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201
Probability of local bifurcation type from a fixed point: A random matrix perspective
Results regarding probable bifurcations from fixed points are presented in
the context of general dynamical systems (real, random matrices), time-delay
dynamical systems (companion matrices), and a set of mappings known for their
properties as universal approximators (neural networks). The eigenvalue spectra
is considered both numerically and analytically using previous work of Edelman
et. al. Based upon the numerical evidence, various conjectures are presented.
The conclusion is that in many circumstances, most bifurcations from fixed
points of large dynamical systems will be due to complex eigenvalues.
Nevertheless, surprising situations are presented for which the aforementioned
conclusion is not general, e.g. real random matrices with Gaussian elements
with a large positive mean and finite variance.Comment: 21 pages, 19 figure
Network Creation Games: Think Global - Act Local
We investigate a non-cooperative game-theoretic model for the formation of
communication networks by selfish agents. Each agent aims for a central
position at minimum cost for creating edges. In particular, the general model
(Fabrikant et al., PODC'03) became popular for studying the structure of the
Internet or social networks. Despite its significance, locality in this game
was first studied only recently (Bil\`o et al., SPAA'14), where a worst case
locality model was presented, which came with a high efficiency loss in terms
of quality of equilibria. Our main contribution is a new and more optimistic
view on locality: agents are limited in their knowledge and actions to their
local view ranges, but can probe different strategies and finally choose the
best. We study the influence of our locality notion on the hardness of
computing best responses, convergence to equilibria, and quality of equilibria.
Moreover, we compare the strength of local versus non-local strategy-changes.
Our results address the gap between the original model and the worst case
locality variant. On the bright side, our efficiency results are in line with
observations from the original model, yet we have a non-constant lower bound on
the price of anarchy.Comment: An extended abstract of this paper has been accepted for publication
in the proceedings of the 40th International Conference on Mathematical
Foundations on Computer Scienc
An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea.
MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins
Selfish Network Creation with Non-Uniform Edge Cost
Network creation games investigate complex networks from a game-theoretic
point of view. Based on the original model by Fabrikant et al. [PODC'03] many
variants have been introduced. However, almost all versions have the drawback
that edges are treated uniformly, i.e. every edge has the same cost and that
this common parameter heavily influences the outcomes and the analysis of these
games.
We propose and analyze simple and natural parameter-free network creation
games with non-uniform edge cost. Our models are inspired by social networks
where the cost of forming a link is proportional to the popularity of the
targeted node. Besides results on the complexity of computing a best response
and on various properties of the sequential versions, we show that the most
general version of our model has constant Price of Anarchy. To the best of our
knowledge, this is the first proof of a constant Price of Anarchy for any
network creation game.Comment: To appear at SAGT'1
High-flux source system for matter-wave interferometry exploiting tunable interactions
Atom interferometers allow determining inertial effects to high accuracy. Quantum-projection noise as well as systematic effects impose demands on large atomic flux as well as ultralow expansion rates. Here we report on a high-flux source of ultracold atoms with free expansion rates near the Heisenberg limit directly upon release from the trap. Our results are achieved in a time-averaged optical dipole trap and enabled through dynamic tuning of the atomic scattering length across two orders of magnitude interaction strength via magnetic Feshbach resonances. We demonstrate Bose-Einstein condensates with more than 6×104 particles after evaporative cooling for 170 ms and their subsequent release with a minimal expansion energy of 4.5 nK in one direction. Based on our results we estimate the performance of an atom interferometer and compare our source system to a high performance chip trap, as readily available for ultraprecise measurements in microgravity environments
Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids
This is the final version of the article. Available from National Academy of Sciences via the DOI in this record.Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.D.P. and T.E.F.Q. received financial support from L’Agence Nationale de la Recherche. W.K. and B.D. received financial support from the Max Planck Society
Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke
Background
Recurrent stroke is a frequent, disabling event after ischemic stroke. This study compared
the efficacy and safety of two antiplatelet regimens — aspirin plus extendedrelease
dipyridamole (ASA–ERDP) versus clopidogrel.
Methods
In this double-blind, 2-by-2 factorial trial, we randomly assigned patients to receive
25 mg of aspirin plus 200 mg of extended-release dipyridamole twice daily or to receive
75 mg of clopidogrel daily. The primary outcome was first recurrence of stroke.
The secondary outcome was a composite of stroke, myocardial infarction, or death
from vascular causes. Sequential statistical testing of noninferiority (margin of 1.075),
followed by superiority testing, was planned.
Results
A total of 20,332 patients were followed for a mean of 2.5 years. Recurrent stroke
occurred in 916 patients (9.0%) receiving ASA–ERDP and in 898 patients (8.8%) receiving
clopidogrel (hazard ratio, 1.01; 95% confidence interval [CI], 0.92 to 1.11). The
secondary outcome occurred in 1333 patients (13.1%) in each group (hazard ratio for
ASA–ERDP, 0.99; 95% CI, 0.92 to 1.07). There were more major hemorrhagic events
among ASA–ERDP recipients (419 [4.1%]) than among clopidogrel recipients (365
[3.6%]) (hazard ratio, 1.15; 95% CI, 1.00 to 1.32), including intracranial hemorrhage
(hazard ratio, 1.42; 95% CI, 1.11 to 1.83). The net risk of recurrent stroke or major
hemorrhagic event was similar in the two groups (1194 ASA–ERDP recipients [11.7%],
vs. 1156 clopidogrel recipients [11.4%]; hazard ratio, 1.03; 95% CI, 0.95 to 1.11).
Conclusions
The trial did not meet the predefined criteria for noninferiority but showed similar rates
of recurrent stroke with ASA–ERDP and with clopidogrel. There is no evidence that either
of the two treatments was superior to the other in the prevention of recurrent
stroke. (ClinicalTrials.gov number, NCT00153062.
- …