96 research outputs found

    Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation

    Get PDF
    BACKGROUND: Disulfiram (DSF) is a drug used for treatment of alcoholism that has also displayed promising anti-cancer activity. It unfolds its effects by inhibiting the enzyme activity of aldehyde dehydrogenase (ALDH) isoforms. METHODS: MTT assay, spheroid formation, clonogenicity assay, qRT-PCR, and ALDH enzyme activity analysis were performed using ovarian cancer cell lines IGROV1, SKOV3 and SKOV3IP1. Cell cycle analyses and measurement of intracellular reactive oxygen species (ROS) were carried out by flow cytometry. ALDH+ and ALDH- cells were isolated by FACS sorting. RESULTS: ALDH activity was inhibited in ovarian cancer stem cells (the proportion of ALDH+ cells was reduced from 21.7% to 0.391%, 8.4% to 0%, 6.88% to 0.05% in cell lines IGROV1, SKOV3, and SKOV3IP1, respectively). DSF with or without the cofactor copper (Cu2+) exhibited cytotoxicity dose- and time-dependent and enhanced cisplatin-induced apoptosis. DSF + Cu2+ increased intracellular ROS levels triggering apoptosis of ovarian cancer stem cells (CSC). Significantly more colony and spheroid formation was observed in ALDH+ compared with ALDH- cells (P < 0.01). Moreover, ALDH+ cells were more resistant to cisplatin treatment compared with ALDH-cells (P < 0.05) and also exhibited a lower basal level of ROS. However, no significant difference in ROS accumulation nor in cellular viability was observed in ALDH + cells in comparison to ALDH- cells after pre-treatment with DSF (0.08 ΌM). CONCLUSION: Our findings provide evidence that DSF might be employed as a novel adjuvant chemotherapeutic agent in combination with cisplatin for treatment of ovarian cancer

    A Meta-Analysis

    Get PDF
    Background p16INK4a is a tumor suppressor protein which is induced in cells upon the interaction of high-risk HPV E7 with the retinoblastoma protein by a positive feedback loop, but cannot exert its suppressing effect. Previous reports suggested that p16INK4a immunostaining allows precise identification of even small CIN or cervical cancer lesions in biopsies. The prognostic value of overexpressed p16INK4a in cervical cancer has been evaluated for several years while the results remain controversial. We performed a systematic review and meta-analysis of studies assessing the clinical and prognostic significance of overexpression of p16INK4a in cervical cancer. Methods Identification and review of publications assessing clinical or prognostic significance of p16INK4a overexpression in cervical cancer until March 1, 2014. A meta-analysis was performed to clarify the association between p16INK4a overexpression and clinical outcomes. Results A total of 15 publications met the criteria and comprised 1633 cases. Analysis of these data showed that p16INK4a overexpression was not significantly associated with tumor TNM staging (I+II vs. III+IV) (OR = 0.75, 95% confidence interval [CI]: 0.35–1.63, P = 0.47), the tumor grade (G1+ G2 vs. G3) (OR = 0.78, 95% CI: 0.39–1.57, P = 0.49), the tumor size (<4 vs. ≄4 cm) (OR = 1.10, 95% CI: 0.45–2.69, P = 0.83), or vascular invasion (OR = 1.20, 95% CI: 0.69–2.08, P = 0.52). However, in the identified studies, overexpression of p16INK4a was highly correlated with no lymph node metastasis (OR = 0.51, 95% CI: 0.28–0.95, P = 0.04), increased overall survival (relative risk [RR]: 0.42, 95% CI: 0.24–0.72, P = 0.002) and increased disease free survival (RR: 0.60, 95% CI: 0.44–0.82, P = 0.001)

    Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines

    Get PDF
    The chemotherapeutic agent cisplatin typically induces apoptosis by inhibiting the cell cycle. Cancer Stem Cells (CSCs), which are a proliferative quiescent and slowly-cycling cell population, are less sensitive and therefore frequently spared from toxic effects. Thus, it remains a priority to increase the sensitivity of CSCs to cisplatin-based chemotherapy, or to specifically target CSCs to improve the therapeutic outcome in breast cancer. Disulfiram (DSF) is a drug used clinically for alcoholism treatment that has displayed promising anti-cancer activity in vitro and in cancer xenografts in breast cancer. Our study provides evidence that DSF inhibits Aldehyde dehydrogenase (ALDH) enzyme activity, inhibits the expression of stemness-related transcription factors (Sox, Nanog, Oct) in CSC derived from breast cancer cell lines, and modulates intracellular reactive oxygen species (ROS) generation. Importantly, our research proved that ALDH + stem-like cells play important roles in the resistance to the conventional chemotherapeutic agent cisplatin. DSF enhances the cytotoxic effect of cisplatin through inhibiting the stemness and by overcoming cisplatin resistance of ALDH + stem-like cells. A quantitative measurement showed the synergistic effect of DSF and cisplatin. Further, we show that ALDH+ cancer stem-like cells and ALDH- bulk cancer cells have different intrinsic ROS levels, what may explain differences in susceptibility to cisplatin treatment. Importantly, this difference is eliminated by DSF treatment making both cell types similarly susceptible for cytotoxic effects by cisplatin. These findings may influence chemotherapeutic treatment approaches in the future

    a meta-analysis of the 5-year efficacy and safety

    Get PDF
    Background The objective of this study was to compare the efficacy and safety of taxane (docetaxel or paclitaxel), cisplatin, and fluorouracil (Tax-PF) with cisplatin plus fluorouracil (PF) regimen by a meta-analysis of data retrieved from the literature. Methods Seven randomized clinical trials were identified, which included patients with advanced head and neck cancer who underwent induction chemotherapy with either a Tax-PF or PF protocol. The outcomes included the 3-year and 5-year overall survival (OS) and progression-free survival (PFS), overall response rate (ORR) and different types of adverse events. Results The 3-year OS rate (HR: 1.14; 95% CI: 1.03 to 1.25; P = 0.008), 3-year PFS rate (HR: 1.24; 95% CI: 1.08 to 1.43; P = 0.002), 5-year OS rate (HR: 1.30; 95% CI, 1.09 to 1.55;P = 0.003), 5-year PFS rate (HR: 1.39; 95% CI, 1.14 to 1.70; P = 0.001) and ORR to chemotherapy (OR 1.66; 95% CI, 1.35 to 2.05; P < 0.001) of the patients in the Tax-PF group were statistically superior to those in the PF group. In terms of toxicities, the incidence of febrile neutropenia (OR 2.36; 95% CI, 1.62 to 3.46; P < 0.001), alopecia (OR 8.22; 95% CI, 3.99 to 16.92; P < 0.001), diarrhea (OR 1.57; 95% CI, 1.05 to 2.36; P = 0.03) and leukopenia (OR 2.79; 95% CI, 1.86 to 4.21; P < 0.001) was higher in the Tax-PF group. Conclusion The Tax-PF induction chemotherapy improved PFS and OS, and the ORR was better as compared to PF- based therapy regimens at the cost of a higher incidence of adverse events

    A meta-analysis

    Get PDF
    There is a lack of predictive biomarkers that can identify patients with head and neck squamous cell carcinoma (HNSCC) who will experience treatment failure and develop drug resistance, recurrence, and metastases. Cancer stem-like cells (CSC) were identified as a subset of cells within the tumor in a variety of solid tumors including HNSCC. CSC are considered the tumor-initiating population responsible for recurrence or metastasis and are associated with therapy resistance. This meta-analysis including fourteen studies with altogether 1258 patients updates and summarizes all relevant data on the impact of ALDH1+ CSC on the prognosis of HNSCC and its association with clinicopathological parameters. ALDH1 expression is highly correlated with tumor differentiation (G3 vs. G1+G2; odds ratio = 2.85. 95% CI: 1.72–4.73, P<0.0001) and decreased overall survival (relative risk = 1.77. 95% CI: 1.41–2.22, P<0.0001) if one out of seven studies was excluded because of heterogeneity. These findings provide insights into the understanding of more aggressive tumor phenotypes and also suggest that the prognostic value provided by HNSCC-subtyping by CSC frequency warrant further clinical investigation

    Phenotype of p53 wild-type epitope-specific T cells in the circulation of patients with head and neck cancer

    Get PDF
    CD8(+) cytotoxic T-cell (CTL) specific for non-mutated, wild type (wt) sequence p53 peptides derived from wt or mutant p53 molecules expressed in head and neck squamous cell carcinomas (HNSCC) have been detected in the circulation of patients with this disease. The frequency and differentiation/maturation phenotypes of these anti-tumor specific CTL can reflect the host's immunologic response. Therefore, we investigated the frequency and phenotypes of wt sequence p53 peptide-specific CTL in patients with HNSCC (n = 33) by flow cytometric analysis using HLA-A*0201 tetrameric peptides (tet) complexed with the wt sequence p53(264-272) or p53(149-157) peptide and co-staining with phenotypic markers. One main finding was that increasing frequencies of tet(+) CD8(+) T cells in patients' circulation correlated with increased frequencies of inactive naive tet(+) cells, while those with effector memory and terminally differentiated phenotypes, which are associated with positive anti-tumor immune responses, decreased. We also found that the frequency of circulating tet(+) CD8(+) T cells negatively correlated with p53 expression in tumor tissues and tumor stage. Our findings support further clinical-based investigations to define the frequencies and phenotypes of wt sequence p53 peptide-specific CD8(+) T cells to predict disease severity, enhance selection of patients for inclusion in vaccination trials and highlight prerequisites to enhance immune susceptibility by activation of inactive naive tet+ T cells and/or enhancing circulating effector T cell activity by checkpoint blockage

    Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc.

    Get PDF
    Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix (ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR), immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched the percentage of Tie2+ in NPCs' population from ~10% to ~36%. Moreover, the spheroid-formation assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture system could be successfully applied to the culture and expansion of tissue-specific progenitors

    Effect of different cryopreservation media on human nucleus pulposus cells' viability and trilineage potential

    Get PDF
    Introduction: Low back pain (LBP) is a significant cause of disability in many countries, affecting more than half a billion people worldwide. In the past, progenitor cells have been found within the nucleus pulposus (NP) of the human intervertebral disc (IVD). However, in the context of cell therapy, little is known about the effect of cryopreservation and expansion on here called “heterogenic” human NP cells (hNPCs), and whether commercially available cryopreservation media are more efficient than “commonly used” media in terms of cell viability. Materials: In this study, hNPCs from four trauma patients (age 40.5 ± 14.3 years) and two patients with degenerated IVDs (age 24 and 46 years), undergoing spinal surgery, were collected. To isolate hNPCs, the tissue was digested with a mild two-step protocol. After subsequent expansion, hNPCs at passages 2-5 were separated and either cryo-preserved for 1 week at −150°C or differentiated into osteogenic, adipogenic, or chondrogenic lineages for 21 days. Cryopreservation was performed with five different media to compare their effect on the cell's viability and differentiation potential. Cell viability was determined with flow cytometry using propidium iodide and the trilineage differentiation potential was assessed by quantitative polymerase chain reaction and histological analysis. Results: After 1 week of cryopreservation, the hNPC's cell viability was comparable for all conditions, that is, independent of the cryopreservation medium used (82.3 ± 0.8% of cell viability). Furthermore, hNPCs from trauma patients showed some evidence for adipogenic and chondrogenic differentiation and at lower levels, this and evidence of osteogenic differentiation could be confirmed with hNPCs from degenerated discs. Moreover, cryopreservation did not affect the cell's differentiation potential in the majority of the cases tested. Conclusion: “Commonly used” cryopreservation media seem to perform just as well as commercially available media in terms of cell viability and the overall maintenance of the hNPCs trilineage differentiation potential

    Towards Tissue-Specific Stem Cell Therapy for the Intervertebral Disc: PPARÎŽ Agonist Increases the Yield of Human Nucleus Pulposus Progenitor Cells in Expansion

    Get PDF
    (1) Background: Low back pain (LBP) is often associated with intervertebral disc degeneration (IVDD). Autochthonous progenitor cells isolated from the center, i.e., the nucleus pulposus, of the IVD (so-called nucleus pulposus progenitor cells (NPPCs)) could be a future cell source for therapy. The NPPCs were also identified to be positive for the angiopoietin-1 receptor (Tie2). Similar to hematopoietic stem cells, Tie2 might be involved in peroxisome proliferator-activated receptor delta (PPARÎŽ) agonist-induced self-renewal regulation. The purpose of this study was to investigate whether a PPARÎŽ agonist (GW501516) increases the Tie2+ NPPCs’ yield within the heterogeneous nucleus pulposus cell (NPC) population. (2) Methods: Primary NPCs were treated with 10 ”M of GW501516 for eight days. Mitochondrial mass was determined by microscopy, using mitotracker red dye, and the relative gene expression was quantified by qPCR, using extracellular matrix and mitophagy-related genes. (3) The NPC’s group treated with the PPARÎŽ agonist showed a significant increase of the Tie2+ NPCs yield from ~7% in passage 1 to ~50% in passage two, compared to the NPCs vehicle-treated group. Furthermore, no significant differences were found among treatment and control, using qPCR and mitotracker deep red. (4) Conclusion: PPARÎŽ agonist could help to increase the Tie2+ NPCs yield during NPC expansion

    Influence of Angiopoietin Treatment with Hypoxia and Normoxia on Human Intervertebral Disc Progenitor Cell’s Proliferation, Metabolic Activity, and Phenotype

    Get PDF
    Increasing evidence implicates intervertebral disc (IVD) degeneration as a major contributor to low back pain. In addition to a series of pathogenic processes, degenerated IVDs become vascularized in contrast to healthy IVDs. In this context, angiopoietin (Ang) plays a crucial role and is involved in cytokine recruitment, and anabolic and catabolic reactions within the extracellular matrix (ECM). Over the last decade, a progenitor cell population has been described in the nucleus pulposus (NP) of the IVD to be positive for the Tie2 marker (also known as Ang-1 receptor). In this study, we investigated the influence of Ang-1 and Ang-2 on human NP cell (Tie2+, Tie2- or mixed) populations isolated from trauma patients during 7 days in normoxia (21% O2) or hypoxia (≀ 5% O2). At the end of the process, the proliferation and metabolic activity of the NP cells were analyzed. Additionally, the relative gene expression of NP-related markers was evaluated. NP cells showed a higher proliferation depending on the Ang treatment. Moreover, the study revealed higher NP cell metabolism when cultured in hypoxia. Additionally, the relative gene expression followed, with an increase linked to the oxygen level and Ang concentration. Our study comparing different NP cell populations may be the start of new approaches for the treatment of IVD degeneration
    • 

    corecore