8 research outputs found

    Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER); Next Generation EU; EUROFANCOLEN); Comunidad de Madrid (AvanCell, B2017/BMD-3692); ICREA-Academia program.Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage-associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D-NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D-NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA

    Natural estrogens enhance the engraftment of human hematopoietic stem and progenitor cells in immunodeficient mice

    Get PDF
    Hematopoietic Stem and Progenitor Cells are crucial in the maintenance of lifelong production of all blood cells. These Stem Cells are highly regulated to maintain homeostasis through a delicate balance between quiescence, self-renewal and differentiation. However, this balance is altered during the hematopoietic recovery after Hematopoietic Stem and Progenitor Cell Transplantation. Transplantation efficacy can be limited by inadequate Hematopoietic Stem Cells number, poor homing, low level of engraftment, or limited self-renewal. As recent evidences indicate that estrogens are involved in regulating the hematopoiesis, we sought to examine whether natural estrogens (estrone or E1, estradiol or E2, estriol or E3 and estetrol or E4) modulate human Hematopoietic Stem and Progenitor Cells. Our results show that human Hematopoietic Stem and Progenitor Cell subsets express estrogen receptors, and whose signaling is activated by E2 and E4 on these cells. Additionally, these natural estrogens cause different effects on human Progenitors in vitro. We found that both E2 and E4 expand human Hematopoietic Stem and Progenitor Cells. However, E4 was the best tolerated estrogen and promoted cell cycle of human Hematopoietic Progenitors. Furthermore, we identified that E2 and, more significantly, E4 doubled human hematopoietic engraftment in immunodeficient mice without altering other Hematopoietic Stem and Progenitor Cells properties. Finally, the impact of E4 on promoting human hematopoietic engraftment in immunodeficient mice might be mediated through the regulation of mesenchymal stromal cells in the bone marrow niche. Together, our data demonstrate that E4 is well tolerated and enhances human reconstitution in immunodeficient mice, directly by modulating human Hematopoietic Progenitor properties and indirectly by interacting with the bone marrow niche. This application might have particular relevance to ameliorate the hematopoietic recovery 3 after myeloablative conditioning, especially when limiting numbers of Hematopoietic Stem and Progenitor Cells are available

    Enhanced susceptibility of galectin-1 deficient mice to experimental colitis

    No full text
    Este trabajo fue subvencionado por el Instituto de Salud Carlos III y cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER)Galectin-1 is aβ-galactoside-binding lectin, ubiquitously expressed in stromal, epithelial, and different subsets of immune cells. Galectin-1 is the prototype member of the galectin family which shares specificity withβ-galactoside containing proteins and lipids. Immunomodulatory functions have been ascribed to endogenous galectin-1 due to its induction of T cell apoptosis, inhibitory effects of neutrophils and T cell trafficking. Several studies have demonstrated that administration of recombinant galectin-1 suppressed experimental colitis by modulating adaptive immune responses altering the fate and phenotype of T cells. However, the role of endogenous galectin-1 in intestinal inflammation is poorly defined. In the present study, the well-characterized acute dextran sulfate sodium (DSS)-induced model of ulcerative colitis was used to study the function of endogenous galectin-1 during the development of intestinal inflammation. We found that galectin-1 deficient mice (Lgals1−/−mice) displayed a more severe intestinal inflammation, characterized by significantly elevated clinical scores, than their wild type counterparts. The mechanisms underlying the enhanced inflammatory response in coliticLgals1−/−mice involved an altered Th17/Th1 profile of effector CD4+T cells. Furthermore, increased frequencies of Foxp3+CD4+regulatory T cells in colon lamina propria inLgals1−/−mice were found. Strikingly, the exacerbated intestinal inflammatory response observed inLgals1−/−mice was alleviated by adoptive transfer of wild type Foxp3+CD4+regulatory T cells at induction of colitis. Altogether, these data highlight the importance of endogenous galectin-1 as a novel determinant in regulating T cell reactivity during the development of intestinal inflammation.Ministerio de Ciencia, Innovación y Universidades (España)European CommissionDepto. de Biología CelularFac. de Ciencias BiológicasTRUEpubPagado por el auto

    In Vitro and In Vivo Genetic Disease Modeling via NHEJ-Precise Deletions Using CRISPR-Cas9

    No full text
    The development of advanced gene and cell therapies for the treatment of genetic diseases requires reliable animal and cellular models to test their efficacy. Moreover, the availability of the target human primary cells of these therapies is reduced in many diseases. The development of endonucleases that can cut into specific sites of the cell genome, as well as the repair of the generated break by non-homologous end-joining, results in a variety of outcomes, insertions, deletions, and inversions that can induce the disruption of any specific gene. Among the many methods that have been developed for gene editing, CRISPR-Cas9 technology has become one of the most widely used endonuclease tools due to its easy design and its low cost. It has also been reported that the use of two guides, instead of just the one required, reduces the outcomes of non-homologous end joining mainly to the precise genomic sequences between the cutting sites of the guides used. We have explored this strategy to generate useful cellular and animal models. Different distances between the two guides have been tested (from 8 to 500 bp apart), and using the optimal range of 30–60 bp we have obtained a human primary cellular model of a genetic disease, pyruvate kinase deficiency, where the availability of the target cells is limited. We have also generated an in vivo model of glycolate oxidase (GO) deficiency, which is an enzyme involved in the glyoxylate metabolism following the same strategy. We demonstrate that the use of two-guide CRISPR-Cas9-induced non-homologous end joining is a feasible and useful tool for disease modeling, and it is most relevant to those diseases in which it is difficult to get the cells that will be genetically manipulated

    In Vitro and In Vivo Genetic Disease Modeling via NHEJ-Precise Deletions Using CRISPR-Cas9

    No full text
    The development of advanced gene and cell therapies for the treatment of genetic diseases requires reliable animal and cellular models to test their efficacy. Moreover, the availability of the target human primary cells of these therapies is reduced in many diseases. The development of endonucleases that can cut into specific sites of the cell genome, as well as the repair of the generated break by non-homologous end-joining, results in a variety of outcomes, insertions, deletions, and inversions that can induce the disruption of any specific gene. Among the many methods that have been developed for gene editing, CRISPR-Cas9 technology has become one of the most widely used endonuclease tools due to its easy design and its low cost. It has also been reported that the use of two guides, instead of just the one required, reduces the outcomes of non-homologous end joining mainly to the precise genomic sequences between the cutting sites of the guides used. We have explored this strategy to generate useful cellular and animal models. Different distances between the two guides have been tested (from 8 to 500 bp apart), and using the optimal range of 30–60 bp we have obtained a human primary cellular model of a genetic disease, pyruvate kinase deficiency, where the availability of the target cells is limited. We have also generated an in vivo model of glycolate oxidase (GO) deficiency, which is an enzyme involved in the glyoxylate metabolism following the same strategy. We demonstrate that the use of two-guide CRISPR-Cas9-induced non-homologous end joining is a feasible and useful tool for disease modeling, and it is most relevant to those diseases in which it is difficult to get the cells that will be genetically manipulated

    Toward Tumor Fight and Tumor Microenvironment Remodeling: PBA Induces Cell Cycle Arrest and Reduces Tumor Hybrid Cells' Pluripotency in Bladder Cancer.

    No full text
    Bladder cancer (BC) is the second most frequent cancer of the genitourinary system. The most successful therapy since the 1970s has consisted of intravesical instillations of Bacillus Calmette-Guérin (BCG) in which the tumor microenvironment (TME), including macrophages, plays an important role. However, some patients cannot be treated with this therapy due to comorbidities and severe inflammatory side effects. The overexpression of histone deacetylases (HDACs) in BC has been correlated with macrophage polarization together with higher tumor grades and poor prognosis. Herein we demonstrated that phenylbutyrate acid (PBA), a HDAC inhibitor, acts as an antitumoral compound and immunomodulator. In BC cell lines, PBA induced significant cell cycle arrest in G1, reduced stemness markers and increased PD-L1 expression with a corresponding reduction in histone 3 and 4 acetylation patterns. Concerning its role as an immunomodulator, we found that PBA reduced macrophage IL-6 and IL-10 production as well as CD14 downregulation and the upregulation of both PD-L1 and IL-1β. Along this line, PBA showed a reduction in IL-4-induced M2 polarization in human macrophages. In co-cultures of BC cell lines with human macrophages, a double-positive myeloid-tumoral hybrid population (CD11b+EPCAM+) was detected after 48 h, which indicates BC cell-macrophage fusions known as tumor hybrid cells (THC). These THC were characterized by high PD-L1 and stemness markers (SOX2, NANOG, miR-302) as compared with non-fused (CD11b-EPCAM+) cancer cells. Eventually, PBA reduced stemness markers along with BMP4 and IL-10. Our data indicate that PBA could have beneficial properties for BC management, affecting not only tumor cells but also the TME

    Improved collection of hematopoietic stem cells and progenitors from Fanconi anemia patients for gene therapy purposes

    Get PDF
    Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34 + cells/μL required to initiate apheresis. A median of 21.8 CD34 + cells/μL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34 + cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34 + cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34 + cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34 + cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols. Mobilization and collection of HSPCs from FA patients with sufficient HSPC reserve is a safe and efficient procedure, incorporating filgrastim and plerixafor as mobilization agents. Adequate HSPC mobilization correlates with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher BM CD34 + cell numbers

    Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia

    No full text
    International audienceFanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date1,2. Mutations in FANCA account for more than 60% of FA cases worldwide3,4. Clinically, FA is associated with congenital abnormalities and cancer predisposition. However, bone marrow failure is the primary pathological feature of FA that becomes evident in 70–80% of patients with FA during the first decade of life5,6. In this clinical study (ClinicalTrials.gov, NCT03157804; European Clinical Trials Database, 2011-006100-12), we demonstrate that lentiviral-mediated hematopoietic gene therapy reproducibly confers engraftment and proliferation advantages of gene-corrected hematopoietic stem cells (HSCs) in non-conditioned patients with FA subtype A. Insertion-site analyses revealed the multipotent nature of corrected HSCs and showed that the repopulation advantage of these cells was not due to genotoxic integrations of the therapeutic provirus. Phenotypic correction of blood and bone marrow cells was shown by the acquired resistance of hematopoietic progenitors and T lymphocytes to DNA cross-linking agents. Additionally, an arrest of bone marrow failure progression was observed in patients with the highest levels of gene marking. The progressive engraftment of corrected HSCs in non-conditioned patients with FA supports that gene therapy should constitute an innovative low-toxicity therapeutic option for this life-threatening disorder
    corecore