136 research outputs found

    Probing Short Range Nucleon Correlations in High Energy Hard Quasielastic pd Reactions

    Get PDF
    We show that the strong dependence of the amplitude for NNNN hard scattering on the collision energy can be used to magnify the effects of short range nucleon correlations in quasielastic pdpd scattering. Under specific kinematical conditions the effect of initial and final state interactions can be accounted for by rescaling the cross section calculated within the plane wave impulse approximation. The feasibility to investigate the role of relativistic effects in the deuteron wave function is demonstrated by comparing the predictions of different formalisms. Binding effects due to short range correlations in deuteron are discussed as well.Comment: 18 pages (LaTex) + 10 postscript figs (available on request

    Evidence for Color Fluctuations in Hadrons from Coherent Nuclear Diffraction}

    Full text link
    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections σdiff\sigma_{diff} for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with few% \le few \% contribution from small size configurations. The computed values of σdiff\sigma_{diff} are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.Comment: Report number DOE/ER 40427-13-N93 11 pages, 3 figures available from author Mille

    Dijet production as a centrality trigger for p-p collisions at CERN LHC

    Full text link
    We demonstrate that a trigger on hard dijet production at small rapidities allows to establish a quantitative distinction between central and peripheral collisions in pbar-p and p-p collisions at Tevatron and LHC energies. Such a trigger strongly reduces the effective impact parameters as compared to minimum bias events. This happens because the transverse spatial distribution of hard partons (x >~ 10^{-2}) in the proton is considerably narrower than that of soft partons, whose collisions dominate the total cross section. In the central collisions selected by the trigger, most of the partons with x >~ 10^{-2} interact with a gluon field whose strength rapidly increases with energy. At LHC (and to some extent already at Tevatron) energies the strength of this interaction approaches the unitarity ('black-body') limit. This leads to specific modifications of the final state, such as a higher probability of multijet events at small rapidities, a strong increase of the transverse momenta and depletion of the longitudinal momenta at large rapidities, and the appearance of long-range correlations in rapidity between the forward/backward fragmentation regions. The same pattern is expected for events with production of new heavy particles (Higgs, SUSY). Studies of these phenomena would be feasible with the CMS-TOTEM detector setup, and would have considerable impact on the exploration of the physics of strong gluon fields in QCD, as well as the search for new particles at LHC.Comment: 17 pages, Revtex 4, 14 EPS figures. Expanded discussion of some points, added 3 new figures and new references. Included comment on connection with cosmic ray physics near the GZK cutoff. To appear in Phys Rev

    Elastic Nd scattering at intermediate energies as a tool for probing the short-range deuteron structure

    Full text link
    A calculation of the deuteron polarization observables AydA^d_y, AyyA_{yy}, AxxA_{xx}, AxzA_{xz} and the differential cross-section for elastic nucleon-deuteron scattering at incident deuteron energies 270 and 880 MeV in lab is presented. A comparison of the calculations with two different deuteron wave-functions derived from the Bonn-CD NNNN-potential model and the dressed bag quark model is carried out. A model-independent approach, based on an optical potential framework, is used in which a nucleon-nucleon TT-matrix is assumed to be local and taken on the energy shell, but still depends on the internal nucleon momentum in a deuteron.Comment: 15 pages, 4 figure

    Thermal Properties of an Inflationary Universe

    Get PDF
    An energetic justification of a thermal component during inflation is given. The thermal component can act as a heat reservoir which induces thermal fluctuations on the inflaton field system. We showed previously that such thermal fluctuations could dominate quantum fluctuations in producing the initial seeds of density perturbations. A Langevin-like rate equation is derived from quantum field theory which describes the production of fluctuations in the inflaton field when acted upon by a simple modeled heat reservoir. In a certain limit this equation is shown to reduce to the standard Langevin equation, which we used to construct "Warm Inflation" scenarios in previous work. A particle physics interpretation of our system-reservoir model is offered.Comment: 28 pages, 0 figures, In Press Physical Review D 199

    Deuteron-Proton Elastic Scattering at Intermediate Energies

    Full text link
    The deuteron-proton elastic scattering has been studied in the multiple scattering expansion formalism. The essential attention has been given to such relativistic problem as a deuteron wave function in a moving frame and transformation of spin states due to Wigner rotation. Parameterization of the nucleon-nucleon tt-matrix has been used to take the off-energy shell effects into account. The vector, Ay,A_y, and tensor, AyyA_{yy}, analyzing powers of the deuteron have been calculated at two deuteron kinetic energies: 395 MeV and 1200 MeV. The obtained results are compared with the experimental data

    Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer\u27s disease: Research outline and call for collaboration.

    Get PDF
    Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer\u27s disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer\u27s Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients

    Diffractive Production of bbˉb \bar b in Proton - Antiproton Collision at the Tevatron

    Full text link
    We show that the cross section of the diffractive production of bbˉb \bar b can be described as the sum of two contributions: the first is proportional to the probability of finding a small size bbˉb \bar b color dipole in the fast hadron wave function before the interaction with a target, while the second is the bbˉb \bar b-production after or during the interaction with the target. The formulae are presented as well as the discussion of the interralation between these two contributions and the Ingelman- Schlein and coherent diffraction mechanisms. The main precdition is that the coherent diffraction mechanism dominates at least at the Tevatron Energies, giving the unique possibility to study it experimentally.Comment: 23 pages, 10 figures, latex fil

    Parity nonconservation in deuteron photoreactions

    Full text link
    We calculate the asymmetries in parity nonconserving deuteron photodisintegration due to circularly polarized photons gamma+d to n+p with the photon laboratory energy ranging from the threshold up to 10 MeV and the radiative capture of thermal polarized neutrons by protons n+p to gamma+d. We use the leading order electromagnetic Hamiltonian neglecting the smaller nuclear exchange currents. Comparative calculations are done by using the Reid93 and Argonne v18 potentials for the strong interaction and the DDH and FCDH "best" values for the weak couplings in a weak one-meson exchange potential. A weak NDelta transition potential is used to incorporate also the Delta(1232)-isobar excitation in the coupled-channels formalism.Comment: 14 pages, 13 figures (18 eps files), LaTeX2
    corecore