149 research outputs found

    High Frequency dynamics in metallic glasses

    Full text link
    Using Inelastic X-ray Scattering we studied the collective dynamics of the glassy alloy Ni33_{33}Zr67_{67} in the first pseudo Brillouin zone, an energy-momentum region still unexplored in metallic glasses. We determine key properties such as the momentum transfer dependence of the sound velocity and of the acoustic damping, discussing the results in the general context of recently proposed pictures for acoustic dynamics in glasses. Specifically, we demonstrate the existence in this strong glass of well defined (in the Ioffe Regel sense) acoustic-like excitations well above the Boson Peak energy.Comment: 4 pages, 4 .eps figures, accepted in Phys. Rev. Let

    Collective excitations in liquid D2 confined within the mesoscopic pores of a MCM-41 molecular sieve

    Get PDF
    We present a comparative study of the excitations in bulk and liquid D2 confined within the pores of MCM-41. The material (Mobile Crystalline Material-41) is a silicate obtained by means of a template that yields a partially crystalline structure composed by arrays of nonintersecting hexagonal channels of controlled width having walls made of amorphous SiO2. Its porosity was characterized by means of adsorption isotherms and found to be composed by a regular array of pores having a narrow distribution of sizes with a most probable value of 2.45 nm. The assessment of the precise location of the sample within the pores is carried out by means of pressure isotherms. The study was conducted at two pressures which correspond to pore fillings above the capillary condensation regime. Within the range of wave vectors where collective excitations can be followed up (0.3<Q<3.0 A˚\AA&#8722;1), we found confinement brings forward a large shortening of the excitation lifetimes that shifts the characteristic frequencies to higher energies. In addition, the coherent quasielastic scattering shows signatures of reduced diffusivity.Comment: 6 page

    Non-target screening reveals time trends of polar micropollutants in a riverbank filtration system

    Get PDF
    The historic emissions of polar micropollutants in a natural drinking water source were investigated by nontarget screening with high-resolution mass spectrometry and open cheminformatics tools. The study area consisted of a riverbank filtration transect fed by the river Lek, a branch of the lower Rhine, and exhibiting up to 60-year travel time. More than 18,000 profiles were detected. Hierarchical clustering revealed that 43% of the 15 most populated clusters were characterized by intensity trends with maxima in the 1990s, reflecting intensified human activities, wastewater treatment plant upgrades and regulation in the Rhine riparian countries. Tentative structure annotation was performed using automated in silico fragmentation. Candidate structures retrieved from ChemSpider were scored based on the fit of the in silico fragments to the experimental tandem mass spectra, similarity to openly accessible accurate mass spectra, associated metadata, and presence in a suspect list. Sixty-seven unique structures (72 over both ionization modes) were tentatively identified, 25 of which were confirmed and included contaminants so far unknown to occur in bank filtrate or in natural waters at all, such as tetramethylsulfamide. This study demonstrates that many classes of hydrophilic organics enter riverbank filtration systems, persisting and migrating for decades if biogeochemical conditions are stable

    Development of an antioxidant formula based on peanut by-products and effects on sensory properties and aroma stability of fortified peanut snacks during storage

    Get PDF
    An antioxidant formula based on peanut skins and hulls, was developed and characterized for total and single polyphenols, and antioxidant power, considering the contribution provided by each peanut by‐product. Then, it was evaluated for its effect on sensory properties and aroma stability of peanut bars over a 100‐day period. To this purpose, snacks fortified and not with the natural additive were experimentally produced

    Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment

    Get PDF
    The robustness of reverse osmosis (RO) against polar organic micropollutants (MPs) was investigated in pilot-scale drinking water treatment. Experiments were carried in hypoxic conditions to treat a raw anaerobic riverbank filtrate spiked with a mixture of thirty model compounds. The chemicals were selected from scientific literature data based on their relevance for the quality of freshwater systems, RO permeate and drinking water. MPs passage and the influence of permeate flux were evaluated with a typical low-pressure RO membrane and quantified by liquid chromatography coupled to high-resolution mass spectrometry. A strong inverse correlation between size and passage of neutral hydrophilic compounds was observed. This correlation was weaker for moderately hydrophobic MPs. Anionic MPs displayed nearly no passage due to electrostatic repulsion with the negatively charged membrane surface, whereas breakthrough of small cationic MPs could be observed. The passage figures observed for the investigated set of MPs ranged from less than 1%-25%. Statistical analysis was performed to evaluate the relationship between physicochemical properties and passage. The effects of permeate flux were more pronounced for small neutral MPs, which displayed a higher passage after a pressure drop
    corecore