146 research outputs found
Incommensurate spin density wave in Co-doped BaFe2As2
57Fe Mossbauer spectroscopy measurements are presented in the underdoped
Ba(Fe{1-x}Cox)2As2 series for x=0.014 (T_c < 1.4K) and x=0.03 and 0.045 (T_c ~
2 and 12K respectively). The spectral shapes in the so-called spin-density wave
(SDW) phase are interpreted in terms of incommensurate modulation of the
magnetic structure, and allow the shape of the modulation to be determined. In
undoped BaFe2As2, the magnetic structure is commensurate, and we find that
incommensurability is present at the lowest doping level (x=0.014). As Co
doping increases, the low temperature modulation progressively loses its
"squaredness" and tends to a sine-wave. The same trend occurs for a given
doping level, as temperature increases. We find that a magnetic hyperfine
component persists far above the SDW transition, its intensity being
progressively tranferred to a paramagnetic component on heating.Comment: 7 pages, 8 figures, published in EP
Absence of large nanoscale electronic inhomogeneities in the Ba(Fe1-xCox)2As2 pnictide
75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal
for x=6% for various field H values and orientations. The sharpness of the
superconducting and magnetic transitions demonstrates a homogeneity of the Co
doping x better than +-0.25%. On the nanometer scale, the paramagnetic part of
the NMR spectra is found very anisotropic and very narrow for H//ab which
allows to rule out the interpretation of Ref.[6] in terms of strong Co induced
electronic inhomogeneities. We propose that a distribution of hyperfine
couplings and chemical shifts due to the Co effect on its nearest As explains
the observed linewidths and relaxations. All these measurements show that Co
substitution induces a very homogeneous electronic doping in BaFe2As2, from
nano to micrometer lengthscales, on the contrary to the K doping.Comment: 6 pages, 4 figure
Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2
We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport
measurements and Angle Resolved photoemission spectroscopy. We observe that Fe
and Ru orbitals hybridize to form a coherent electronic structure and that Ru
does not induce doping. The number of holes and electrons, deduced from the
area of the Fermi Surface pockets, are both about twice larger than in
BaFe2As2. The contribution of both carriers to the transport is evidenced by a
change of sign of the Hall coefficient with decreasing temperature. Fermi
velocities increase significantly with respect to BaFe2As2, suggesting a
significant reduction of correlation effects. This may be a key to understand
the appearance of superconductivity at the expense of magnetism in undoped iron
pnictides
Effect of controlled disorder on quasiparticle thermal transport in BiSrCaCuO
Low temperature thermal conductivity, , of optimally-doped Bi2212 was
studied before and after the introduction of point defects by electron
irradiation. The amplitude of the linear component of remains
unchanged, confirming the universal nature of heat transport by zero-energy
quasiparticles. The induced decrease in the absolute value of at
finite temperatures allows us to resolve a nonuniversal term in due to
conduction by finite-energy quasiparticles. The magnitude of this term provides
an estimate of the quasiparticle lifetime at subkelvin temperatures.Comment: 5 pages including 2 .eps figuer
Role of pair-breaking and phase fluctuations in c-axis tunneling in underdoped BiSrCaCuO
The Josephson Plasma Resonance is used to study the c-axis supercurrent in
the superconducting state of underdoped
BiSrCaCuO with varying degrees of controlled
point-like disorder, introduced by high-energy electron irradiation. As
disorder is increased, the Josephson Plasma frequency decreases proportionally
to the critical temperature. The temperature dependence of the plasma frequency
does not depend on the irradiation dose, and is in quantitative agreement with
a model for quantum fluctuations of the superconducting phase in the CuO
layers.Comment: 2 pages, submitted to the Proceedings of M2S-HTSC VIII Dresde
Planar 17O NMR study of Pr_yY_{1-y}Ba_2Cu_3O_{6+x}
We report the planar ^{17}O NMR shift in Pr substituted YBa_{2}Cu_{3}O_{6+x},
which at x=1 exhibits a characteristic pseudogap temperature dependence,
confirming that Pr reduces the concentration of mobile holes in the CuO_{2}
planes. Our estimate of the rate of this counterdoping effect, obtained by
comparison with the shift in pure samples with reduced oxygen content, is found
insufficient to explain the observed reduction of T_c. From the temperature
dependent magnetic broadening of the ^{17}O NMR we conclude that the Pr moment
and the local magnetic defect induced in the CuO_2 planes produce a long range
spin polarization in the planes, which is likely associated with the extra
reduction of T_c. We find a qualitatively different behaviour in the oxygen
depleted Pr_yY_{1-y}Ba_2Cu_3O_{6.6}, i.e. the suppression of T is nearly
the same, but the magnetic broadening of the ^{17}O NMR appears weaker. This
difference may signal a weaker coupling of the Pr to the planes in the
underdoped compound, which might be linked with the larger Pr to CuO_2 plane
distance, and correspondingly weaker hybridization.Comment: 8 pages, 9 figures, accepted in Phys Rev
Electron transport and anisotropy of the upper critical magnetic field in a Ba0.68K0.32Fe2As2 single crystals
Early work on the iron-arsenide compounds supported the view, that a reduced
dimensionality might be a necessary prerequisite for high-Tc superconductivity.
Later, however, it was found that the zero-temperature upper critical magnetic
field, Hc2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we
report measurements of the temperature dependence of the electrical
resistivity, \Gamma(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single
crystals in zero magnetic field and for Ba0.68K0.32Fe2As2 as well in static and
pulsed magnetic fields up to 60 T. We find that the resistivity of both
compounds in zero field is well described by an exponential term due to
inter-sheet umklapp electron-phonon scattering between light electrons around
the M point to heavy hole sheets at the \Gamma point in reciprocal space. From
our data, we construct an H-T phase diagram for the inter-plane (H || c) and
in-plane (H || ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data
for underdoped 122 FeAs compounds, we find that Hc2(T) is in fact anisotropic
in optimally doped samples down to low temperatures. The anisotropy parameter,
{\gamma} = Habc2/Hcc2, is about 2.2 at Tc. For both field orientations we find
a concave curvature of the Hc2 lines with decreasing anisotropy and saturation
towards lower temperature. Taking into account Pauli spin paramagnetism we
perfectly can describe Hc2(T) and its anisotropy.Comment: 7 pages, 3 figure
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
The nature of the pseudogap phase is a central problem in the quest to
understand high-Tc cuprate superconductors. A fundamental question is what
symmetries are broken when that phase sets in below a temperature T*. There is
evidence from both polarized neutron diffraction and polar Kerr effect
measurements that time- reversal symmetry is broken, but at temperatures that
differ significantly. Broken rotational symmetry was detected by both
resistivity and inelastic neutron scattering at low doping and by scanning
tunnelling spectroscopy at low temperature, but with no clear connection to T*.
Here we report the observation of a large in-plane anisotropy of the Nernst
effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase
diagram. We show that the CuO chains of the orthorhombic lattice are not
responsible for this anisotropy, which is therefore an intrinsic property of
the CuO2 planes. We conclude that the pseudogap phase is an electronic state
which strongly breaks four-fold rotational symmetry. This narrows the range of
possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Superconducting Fluctuation and Pseudogap in Disordered Short Coherence Length Superconductor
We investigate the role of disorder on the superconducting (SC) fluctuation
in short coherence length d-wave superconductors. The particular intetest is
focused on the disorder-induced microscopic inhomogeneity of SC fluctuation and
its effect on the pseudogap phenomena. We formulate the self-consistent 1-loop
order theory for the SC fluctuation in inhomogeneous systems and analyze the
disordered -- model. The SC correlation function, electronic DOS and
the critical temperature are estimated. The SC fluctuation is localized like a
nanoscale granular structure when the coherence length is short, namely the
transition temperature is high. This is contrasted to the long coherence length
superconductors where the order parameter is almost uniform in the microscopic
scale. In the former case, the SC fluctuation is enhanced by the disorder in
contrast to the Abrikosov-Gorkov theory. These results are consistent with the
STM, NMR and transport measurements in high- cuprates and illuminate
the essential role of the microscopic inhomogeneity. We calculate the spacial
dependence of DOS around the single impurity and discuss the consistency with
the NMR measurements
- …
