246 research outputs found

    Enhancement by polydispersity of the biaxial nematic phase in a mixture of hard rods and plates

    Get PDF
    The phase diagram of a polydisperse mixture of uniaxial rod-like and plate-like hard parallelepipeds is determined for aspect ratios κ=5\kappa=5 and 15. All particles have equal volume and polydispersity is introduced in a highly symmetric way. The corresponding binary mixture is known to have a biaxial phase for κ=15\kappa=15, but to be unstable against demixing into two uniaxial nematics for κ=5\kappa=5. We find that the phase diagram for κ=15\kappa=15 is qualitatively similar to that of the binary mixture, regardless the amount of polydispersity, while for κ=5\kappa=5 a sufficient amount of polydispersity stabilizes the biaxial phase. This provides some clues for the design of an experiment in which this long searched biaxial phase could be observed.Comment: 4 pages, 5 eps figure files, uses RevTeX 4 styl

    Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework

    Get PDF
    In this paper, a methodology for optimal decision making for electrical systems is addressed. This methodology seeks to identify and to prioritize the replacement and maintenance of a power asset fleet optimizing the return of investment. It fulfills this objective by considering the risk index, the replacement and maintenance costs, and the company revenue. The risk index is estimated and predicted for each asset using both its condition records and by evaluating the consequence of its failure. The condition is quantified as the probability of failure of the asset, and the consequence is determined by the impact of the asset failure on the whole system. Failure probability is estimated using the health index as scoring of asset condition. The consequence is evaluated considering a failure impact on the objectives of reliability (energy not supplied -ENS), environment, legality, and finance using Monte Carlo simulations for an assumed period of planning. Finally, the methodology was implemented in an open-source library called PywerAPM for assessing optimal decisions, where the proposed mathematical optimization problem is solved. As a benchmark, the power transformer fleet of the New England IEEE 39 Bus System was used. Condition records were provided by a local utility to compute the health index of each transformer. Subsequently, a Monte Carlo contingency simulation was performed to estimate the energy not supplied for a period of analysis of 10 years. As a result, the fleet is ranked according to risk index, and the optimal replacement and maintenance are estimated for the entire fleet

    Theoretical Study on Superconductivity in Boron-Doped Diamond

    Full text link
    We consider superconductivity in boron (B) doped diamond using a simplified model for the valence band of diamond. We treat the effects of substitutional disorder of B ions by the coherent potential approximation (CPA) and those of the attractive force between holes by the ladder approximation under the assumption of instantaneous interaction with the Debye cutoff. We thereby calculate the quasiparticle life time, the evolution of the single-particle spectra due to doping, and the effect of disorder on the superconducting critical temperature TcT_c. We in particular compare our results with those for supercell calculations to see the role of disorder, which turns out to be of crucial importance to TcT_c.Comment: 9 pages, 13 figures, submitted to J. Phys. Soc. Jpn., Errors in embedded eps figure files have been correcte

    Theory of Banana Liquid Crystal Phases and Phase Transitions

    Full text link
    We study phases and phase transitions that can take place in the newly discovered banana (bow-shaped or bent-core) liquid crystal molecules. We show that to completely characterize phases exhibited by such bent-core molecules a third-rank tensor TijkT^{ijk} order parameter is necessary in addition to the vector and the nematic (second-rank) tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by their space-symmetry group and order parameters, and catalog the universality classes of the corresponding phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the conventional liquid-crystal phases such as the nematic phase, we predict the existence of novel liquid phases, including the spontaneously chiral nematic (NT+2)(N_T + 2)^* and chiral polar (VT+2)(V_T + 2)^* phases, the orientationally-ordered but optically isotropic tetrahedratic TT phase, and a novel nematic NTN_T phase with D2dD_{2d} symmetry that is neither uniaxial nor biaxial. Interestingly, the Isotropic-Tetrahedratic transition is {\em continuous} in mean-field theory, but is likely driven first-order by thermal fluctuations. We conclude with a discussion of smectic analogs of these phases and their experimental signatures.Comment: 28 pgs. RevTex, 32 eps figures, submitted to Phys. Rev.

    Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures

    Get PDF
    [[abstract]]The phase diagram of the ternary system potassium laurate-1-decanol-D2O was studied over concentration ranges where nematic phases are likely to occur. Two uniaxial nematic phases which are separated by a biaxial nematic phase are found. In limited concentration range the following phase sequence may be observed reversibly on heating and on cooling: isotropic-uniaxial nematic (positive optical anisotropy)-biaxial nematic-uniaxial nematic (negative optical anisotropy)-biaxial nematic-uniaxial nematic (positive optical anisotropy)-isotropic.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Structural, electronic, and dynamical properties of amorphous gallium arsenide: a comparison between two topological models

    Full text link
    We present a detailed study of the effect of local chemical ordering on the structural, electronic, and dynamical properties of amorphous gallium arsenide. Using the recently-proposed ``activation-relaxation technique'' and empirical potentials, we have constructed two 216-atom tetrahedral continuous random networks with different topological properties, which were further relaxed using tight-binding molecular dynamics. The first network corresponds to the traditional, amorphous, Polk-type, network, randomly decorated with Ga and As atoms. The second is an amorphous structure with a minimum of wrong (homopolar) bonds, and therefore a minimum of odd-membered atomic rings, and thus corresponds to the Connell-Temkin model. By comparing the structural, electronic, and dynamical properties of these two models, we show that the Connell-Temkin network is energetically favored over Polk, but that most properties are little affected by the differences in topology. We conclude that most indirect experimental evidence for the presence (or absence) of wrong bonds is much weaker than previously believed and that only direct structural measurements, i.e., of such quantities as partial radial distribution functions, can provide quantitative information on these defects in a-GaAs.Comment: 10 pages, 7 ps figures with eps

    Collapse and folding of pressurized rings in two dimensions

    Full text link
    Hydrostatically pressurized circular rings confined to two dimensions (or cylinders constrained to have only z-independent deformations) undergo Euler type buckling when the outside pressure exceeds a critical value. We perform a stability analysis of rings with arc-length dependent bending moduli and determine how weakened bending modulus segments affect the buckling critical pressure. Rings with a 4-fold symmetric modulation are particularly susceptible to collapse. In addition we study the initial post-buckling stages of the pressurized rings to determine possible ring folding patterns

    Using Computational and Mechanical Models to Study Animal Locomotion

    Get PDF
    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.

    Designing electronic collaborative learning environments

    Get PDF
    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use them, sometimes very enthusiastically, but often in a perfunctory way. Finally, researchers study them and—as is usually the case when apples and oranges are compared—find no conclusive evidence as to whether or not they work, where they do or do not work, when they do or do not work and, most importantly, why, they do or do not work. This contribution presents an affordance framework for such collaborative learning environments; an interaction design procedure for designing, developing, and implementing them; and an educational affordance approach to the use of tasks in those environments. It also presents the results of three projects dealing with these three issues

    N-vector spin models on the sc and the bcc lattices: a study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order beta^{21}

    Get PDF
    High temperature expansions for the free energy, the susceptibility and the second correlation moment of the classical N-vector model [also known as the O(N) symmetric classical spin Heisenberg model or as the lattice O(N) nonlinear sigma model] on the sc and the bcc lattices are extended to order beta^{21} for arbitrary N. The series for the second field derivative of the susceptibility is extended to order beta^{17}. An analysis of the newly computed series for the susceptibility and the (second moment) correlation length yields updated estimates of the critical parameters for various values of the spin dimensionality N, including N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model], N=2 [the XY model], N=3 [the Heisenberg model]. For all values of N, we confirm a good agreement with the present renormalization group estimates. A study of the series for the other observables will appear in a forthcoming paper.Comment: Revised version to appear in Phys. Rev. B Sept. 1997. Revisions include an improved series analysis biased with perturbative values of the scaling correction exponents computed by A. I. Sokolov. Added a reference to estimates of exponents for the Ising Model. Abridged text of 19 pages, latex, no figures, no tables of series coefficient
    corecore