13 research outputs found
Multiple in vitro and in vivo regulatory effects of budesonide in CD4+ T lymphocyte subpopulations of allergic asthmatics.
Abstract
BACKGROUND:
Increased activation and increased survival of T lymphocytes characterise bronchial asthma.
OBJECTIVES:
In this study the effect of budesonide on T cell survival, on inducible co-stimulator T cells (ICOS), on Foxp3 and on IL-10 molecules in T lymphocyte sub-populations was assessed.
METHODS:
Cell survival (by annexin V binding) and ICOS in total lymphocytes, in CD4+/CD25+ and in CD4+/CD25- and Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25-cells was evaluated, by cytofluorimetric analysis, in mild intermittent asthmatics (n = 19) and in controls (n = 15). Allergen induced T lymphocyte proliferation and the in vivo effects of budesonide in mild persistent asthmatics (n = 6) were also explored.
RESULTS:
Foxp3 was reduced in CD4+/CD25- and in CD4+/CD25+ cells and ICOS was reduced in CD4+/CD25+ cells but it was increased in CD4+CD25-in asthmatics when compared to controls. In asthmatics, in vitro, budesonide was able to: 1) increase annexin V binding and to reduce ICOS in total lymphocytes; 2) increase annexin V binding and Foxp3 and to reduce ICOS in CD4+/CD25- cells; 3) reduce annexin V binding and to increase IL-10 and ICOS in CD4+/CD25+ cells; 4) reduce cell allergen induced proliferation. In vivo, budesonide increased ICOS in CD4+/CD25+ while it increased Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25- cells.
CONCLUSIONS:
Budesonide modulates T cell survival, ICOS, Foxp3 and IL-10 molecules differently in T lymphocyte sub-populations. The findings provided shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation
Genetic screening of Fabry patients with EcoTILLING and HRM technology
<p>Abstract</p> <p>Background</p> <p>Anderson-Fabry disease (FD) is caused by a deficit of the α-galactosidase A enzyme which leads to the accumulation of complex sphingolipids, especially globotriaosylceramide (Gb3), in all the cells of the body, causing the onset of a multi-systemic disease with poor prognosis in adulthood. In this article, we describe two alternative methods for screening the <it>GLA </it>gene which codes for the α-galactosidase A enzyme in subjects with probable FD in order to test analysis strategies which include or rely on initial pre-screening.</p> <p>Findings</p> <p>We analyzed 740 samples using EcoTILLING, comparing two mismatch-specific<ul/>endonucleases, CEL I and ENDO-1, while conducting a parallel screening of the same samples using HRM (High Resolution Melting). Afterwards, all samples were subjected to direct sequencing. Overall, we identified 12 different genetic variations: -10C>T, -12G>A, -30G>A, IVS2-76_80del5, D165H, C172Y, IVS4+16A>G, IVS4 +68 A>G, c.718_719delAA, D313Y, IVS6-22C>T, G395A. This was consistent with the high genetic heterogeneity found in FD patients and carriers. All of the mutations were detected by HRM, whereas 17% of the mutations were not found by EcoTILLING. The results obtained by EcoTILLING comparing the CEL I and ENDO-1 endonucleases were perfectly overlapping.</p> <p>Conclusion</p> <p>On the basis of its simplicity, flexibility, repeatability, and sensitivity, we believe that<ul/>HRM analysis of the <it>GLA </it>gene is a reliable presequencing screening tool. This method can be applied to any genomic feature to identify known and unknown genetic alterations, and it is ideal for conducting screening and population studies.</p
A classical phenotype of Anderson-Fabry disease in a female patient with intronic mutations of the GLA gene: a case report.
Abstract Background Fabry disease (FD) is a hereditary metabolic disorder caused by the partial or total inactivation of a lysosomal hydrolase, the enzyme α-galactosidase A (GLA). This inactivation is responsible for the storage of undegraded glycosphingolipids in the lysosomes with subsequent cellular and microvascular dysfunction. The incidence of disease is estimated at 1:40,000 in the general population, although neonatal screening initiatives have found an unexpectedly high prevalence of genetic alterations, up to 1:3,100, in newborns in Italy, and have identified a surprisingly high frequency of newborn males with genetic alterations (about 1:1,500) in Taiwan. Case presentation We describe the case of a 40-year-old female patient who presented with transient ischemic attack (TIA), discomfort in her hands, intolerance to cold and heat, severe angina and palpitations, chronic kidney disease. Clinical, biochemical and molecular studies were performed. Conclusions Reported symptoms, peculiar findings in a renal biopsy – the evidence of occasional lamellar inclusions in podocytes and mesangial cells – and left ventricular (LV) hypertrophy, which are considered to be specific features of FD, as well as molecular evaluations, suggested the diagnosis of a classical form of FD. We detected four mutations in the GLA gene of the patient: -10C>T (g.1170C>T), c.370-77_-81del (g.7188-7192del5), c.640-16A>G (g.10115A>G), c.1000-22C>T (g.10956C>T). These mutations, located in promoter and intronic regulatory regions, have been observed in several patients with manifestations of FD. In our patient clinical picture showed a multisystemic involvement with early onset of symptoms, thus suggesting that these intronic mutations can be found even in patients with classical form of FD.</p
Identification of a novel mutation in the alpha-galactosidase A gene in patients with Fabry disease.
OBJECTIVES: Mutation analysis of the alpha-galactosidase A (GLA) gene is a valuable tool for the diagnosis of affected families. In our work, we analyze about one thousand samples per year from patients suspected of having Fabry disease (FD).
DESIGN AND METHODS: We carried out high resolution melting analysis (HRM) and DNA sequencing of all the exons of the GLA gene. We also assayed the alpha-galactosidase A activity in patients' blood.
RESULTS: In some members of one family, we identified a new mutation in the GLA gene, c.614delC. This is a deletion of a single nucleotide, a cytosine, in exon 4 of the gene which causes a frameshift mutation.
CONCLUSIONS: Patients with the c.614delC mutation show classical clinical manifestations of FD, and the male patient has no alpha-galactosidase A activity. These data suggest that c.614delC is a novel mutation associated with FD