13 research outputs found

    Online Local Volatility Calibration by Convex Regularization with Morozov's Principle and Convergence Rates

    Full text link
    We address the inverse problem of local volatility surface calibration from market given option prices. We integrate the ever-increasing flow of option price information into the well-accepted local volatility model of Dupire. This leads to considering both the local volatility surfaces and their corresponding prices as indexed by the observed underlying stock price as time goes by in appropriate function spaces. The resulting parameter to data map is defined in appropriate Bochner-Sobolev spaces. Under this framework, we prove key regularity properties. This enable us to build a calibration technique that combines online methods with convex Tikhonov regularization tools. Such procedure is used to solve the inverse problem of local volatility identification. As a result, we prove convergence rates with respect to noise and a corresponding discrepancy-based choice for the regularization parameter. We conclude by illustrating the theoretical results by means of numerical tests.Comment: 23 pages, 5 figure

    Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

    Get PDF
    In this paper, we prove optimal convergence rates results for regularisation methods for solving linear ill-posed operator equations in Hilbert spaces. The result generalises existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions

    On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy

    Full text link
    We address the classical issue of appropriate choice of the regularization and discretization level for the Tikhonov regularization of an inverse problem with imperfectly measured data. We focus on the fact that the proper choice of the discretization level in the domain together with the regularization parameter is a key feature in adequate regularization. We propose a discrepancy-based choice for these quantities by applying a relaxed version of Morozov's discrepancy principle. Indeed, we prove the existence of the discretization level and the regularization parameter satisfying such discrepancy. We also prove associated regularizing properties concerning the Tikhonov minimizers.Comment: 28 pages, 4 figure

    Structured Models for Cell Populations: Direct and Inverse Problems

    No full text
    Structured population models in biology lead to integro-differential equations that describe the evolution in time of the population density taking into account a given feature such as the age, the size, or the volume. These models possess interesting analytic properties and have been used extensively in a number of areas. In this article, we consider a size-structured model for cell division and revisit the question of determining the division (birth) rate from the measured stable size distribution of the population. We formulate such question as an inverse problem for an integro-differential equation posed on the half line. The focus is to compare from a computational view point the performance of different algorithms. Finally, we will discuss real data reconstructions with E. coli data

    Structured Models for Cell Populations: Direct and Inverse Problems

    No full text
    Structured population models in biology lead to integro-differential equations that describe the evolution in time of the population density taking into account a given feature such as the age, the size, or the volume. These models possess interesting analytic properties and have been used extensively in a number of areas. In this article, we consider a size-structured model for cell division and revisit the question of determining the division (birth) rate from the measured stable size distribution of the population. We formulate such question as an inverse problem for an integro-differential equation posed on the half line. The focus is to compare from a computational view point the performance of different algorithms. Finally, we will discuss real data reconstructions with E. coli data

    The Interplay between COVID-19 and the Economy in Canada

    No full text
    We propose a generalized susceptible-exposed-infected-removed (SEIR) model to track COVID-19 in Canadian provinces, taking into account the impact of the pandemics on unemployment. The model is based on a network representing provinces, where the contact between individuals from different locations is defined by a data-driven mixing matrix. Moreover, we use time-dependent parameters to account for the dynamical evolution of the disease incidence, as well as changes in the rates of hospitalization, intensive care unit (ICU) admission, and death. Unemployment is accounted for as a reduction in the social interaction, which translates into smaller transmission parameters. Conversely, the model assumes that higher proportions of infected individuals reduce overall economic activity and therefore increase unemployment. We tested the model using publicly available sources and found that it is able to reproduce the reported data with remarkable in-sample accuracy. We also tested the model’s ability to make short-term out-of-sample forecasts and found it very satisfactory, except in periods of rapid changes in behavior. Finally, we present long-term predictions for both epidemiological and economic variables under several future vaccination scenarios

    The impact of COVID-19 vaccination delay: A data-driven modeling analysis for Chicago and New York City.

    No full text
    BACKGROUND: By the beginning of December 2020, some vaccines against COVID-19 already presented efficacy and security, which qualify them to be used in mass vaccination campaigns. Thus, setting up strategies of vaccination became crucial to control the COVID-19 pandemic. METHODS: We use daily COVID-19 reports from Chicago and New York City (NYC) from 01-Mar2020 to 28-Nov-2020 to estimate the parameters of an SEIR-like epidemiological model that accounts for different severity levels. To achieve data adherent predictions, we let the model parameters to be time-dependent. The model is used to forecast different vaccination scenarios, where the campaign starts at different dates, from 01-Oct-2020 to 01-Apr-2021. To generate realistic scenarios, disease control strategies are implemented whenever the number of predicted daily hospitalizations reaches a preset threshold. RESULTS: The model reproduces the empirical data with remarkable accuracy. Delaying the vaccination severely affects the mortality, hospitalization, and recovery projections. In Chicago, the disease spread was under control, reducing the mortality increment as the start of the vaccination was postponed. In NYC, the number of cases was increasing, thus, the estimated model predicted a much larger impact, despite the implementation of contention measures. The earlier the vaccination campaign begins, the larger is its potential impact in reducing the COVID-19 cases, as well as in the hospitalizations and deaths. Moreover, the rate at which cases, hospitalizations and deaths increase with the delay in the vaccination beginning strongly depends on the shape of the incidence of infection in each city
    corecore