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1. Introduction

Let L : X — Y be a bounded linear operator between two Hilbert spaces X
and Y. We are interested in finding the minimum-norm solution x" € X of the
equation

Lx=y

for some y € R(L), that is the element x" € {x € X | Lx = y} with the property
|x"|| = inf{||x|| | Lx = y}. It is well-known that this minimal-norm solution
exists and is unique, see for example [3, Theorem 2.5].

Since y is typically not exactly known and only an approximation y € Y
with [ly — y|| < § is given, we are looking for a family (x4 (¥))y>0 of approx-
imative solutions so that for every sequence (y)ren converging to y, we find a
sequence (ox)keN of regularization parameters such that (xq, (Jx))ken tends to
the minimum-norm solution x.

A standard way to construct this family is by using Tikhonov regularization:

xa8(§) = argmin, (I1Lx — 711 + e [x]%),
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where the minimiser can be explicitly calculated from the optimality condition
and reads as follows:

xIK5) = (@ + L*L)7'L*. (1)
More generally, we want to analyze regularized solutions of the form
Xo (5’) =Ty (L*L)L*j’ (2)

with some appropriately chosen function r,, see for example [9].

The aim of this article is to characterize for a given regularization method,
generated by a family (r,)q>0, the optimal convergence rate with which x, ()
tends to the minimum-norm solution x'. This convergence rate depends on the
solution x™, and we will give an explicit relation between the spectral projections
of x* with respect to the operator L* L and the convergence rate; first in Section 2
for the convergence of x, (y) with the exact data y, and then in Section 3 for x, (y)
with noisy data y. This generalizes existing convergence rates results of [10] to
general source conditions, such as logarithmic source conditions.

Afterwards, we show in Section 4 that these convergence rates can also be
obtained from variational inequalities and establish the optimality of these gen-
eral variational source conditions, extending the results of [1]. It is interesting
to note that variational source conditions are equivalent to convergence rates of
the regularized solutions, while the classical results in [5] are not.

Finally, we consider in Section 5 approximate source conditions that relate
the convergence rates of the regularized solutions to the decay rate of a distance
function, measuring how far away the minimum-norm solution is from the
classical range condition, see [4, 9]. We can show that these approximate source
conditions are indeed equivalent to the convergence rates.

2. Convergence rates for exact data

In the following, we analyze the convergence rate of the sequence (x4 (¥))a>0
with the exact data y € R(L) to the minimum-norm solution x" of Lx = y.

We investigate regularization methods of the form (2), which are generated
by functions satisfying the following properties.

Definition 2.1. We call a family (ry)q~0 of continuous functions r, : [0, 00) —
[0, 00) the generator of a regularization method if
(i) there exists a constant p € (0, 1) such that

)1 p
rq(A) <min{—,——1t foreveryA >0, @ > 0,

YRV
(ii) the error function 7y : [0,00) — [0, 00), defined by
Fa () = (1 = Ara (L)%, A =0, (3)

is decreasing.
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(iii) For fixed A > 0 the map « > 74 (X) is continuous and increasing, and
(iv) there exists a constant p € (0, 1) such that

fo(@) < p foralla > 0.

Remark. These conditions do not yet enforce that x,(y) — x'. To ensure this,
we could additionally impose that 7, (A) — 0 for every A > Oasa — 0.

Let us now fix the notation for the rest of the article.

Notation 2.2. Let L : X — Y be a bounded linear operator between two real
Hilbert spaces X and Y, y € R(L), and x" € X be the minimum-norm solution
of Lx = y.

We choose a generator (ry )y >0 of a regularization method, introduce the fam-
ily (rq)a>0 of its error functions, and the corresponding family of regularized
solutions shall be given by (2).

We denote by A — E4 and A +— F4 the spectral measures of the operators
L*L and LL*, respectively, on all Borel sets A C [0, 00).

Next, we define the right-continuous and increasing function
e:[0,00) — R,
» > | Epo a1,

(4)

Moreover, if f : (0,00) — R is a right-continuous, increasing, and bounded
function, we write

b
f g) df()»)=/( b]g(X) dper (1)

for the Lebesgue-Stieltjes integral of f, where us denotes the unique non-
negative Borel measure defined by s ((A1, A2]) = f(A2) —f(A1) and g € L'(w).

Remark. In this setting, we can write the error
xo(y) — &1 = 1y (L*L)L*y — x" = (r (L*L)L*L — Dx" (5)

according to spectral theory in the form

IL|I?
() — x| = fo 7 (1) de(). (6)

We want to point out here that it directly follows from the definition that the
minimum-norm solution x is in the orthogonal complement N (L)* of the
nullspace of L, and we therefore do not have to consider the point A = 0 in
the integrals in equation (6).

We first want to establish a relation between the convergence rate of the
regularized solution x4 (y) for exact data y to the minimum-norm solution x'
and the behaviour of the spectral function (4).
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Proposition 2.3. We use Notation 2.2 and assume that there exist an increasing
function ¢ : (0,00) — (0,00) and constants ;v € (0,1) and A > 0 such that we
have for every a > 0 the inequality

eMTH(V) < Ap(a)  forall 2 > 0. (7)

Then, the following two statements are equivalent:
(i) There exists a constant C > 0 with

1% (y) — x> < Co(a) foralla > 0. (8)
(ii) There exists a constant C > 0 with
e(L) < C(p(k) forall A > 0. (9)

Proof. According to Definition 2.1 (ii) the error function 7, is decreasing, and
thus it follows together with (6) that for all & > 0

Ful@e@) = (@ [ " de) < | "0 de0) < () — AP (10)
0 0
Let first (8) hold. Then, it follows from (10) that for alla > 0
re(@)e(@) < Co(a). (11)

Now, we use Definition 2.1 (i), which gives that

u(@) = (1 —arg(@)* = (1 — p)* > 0.

Using this estimate in (11) yields (9) with C= ﬁ > 0.
Conversely, let (9) hold. Since [|x,(y) — x"I?2 < |IxT||?> (which follows from
(6) with 7, < 1), it is enough to check the condition (8) for all « € (0, IL)I%].
We use (6) and integrate the right hand side by parts, see for example
[2, Theorem 6.2.2] regarding the integration by parts for Lebesgue-Stieltjes

integrals, and obtain that

L2
% () — xT|* = Fo (ILII)e(ILI1*) + /0 e(h)d(=Fo) (). (12)

We split up the integral on the right hand side into two terms:

LI

IL|I? o
fo e() d(—Fa) () = /o e(0) d(—Fa) (O0) + / e(0) d(=F)(). (13)

The first term is estimated by using that the function e is increasing and by
utilising the assumption (9):

fo e(A) d(—7a)(A) = e(ot)fo d(=Fa)(2) = e(@)(1 = To(@)) < Cop(a).



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION e 525

The second integral term in (13) is estimated by using the inequalities (9)
and (7):
IZI?

I .
/ e() d(=7o)(1) = C/ @A) d(=7o) (1)

o

_ e 1
— rH —7
=C fa e(M)Th (L) Nﬂm d(—7e) (1)

L2
< 4Cop(@) f - <x> d(—F2) ()
AC
- l—so(a)(r;—“(a) — 7y MAILIP))
AC 1=
< e,

where we used Definition 2.1 (iv) in the last step. Inserting the two estimates
in (13) and in (12), we find with e(||L||?) = |xT||? that

> ~1—p

- - C
1% ) — x'11? < F(ILID K12 + Cola) + =2 PR

From (7), we deduce further that

1 1

. ) Anr 1 Aﬂ(pﬂ ( )
R (ILIP) € ————¢7 (@) = “F—2L0(0) < cp(@)
e (ILI%) @ (L%
with ¢ = L,
@(lIL]1?)

since ¢ is increasing and u < 1.
Thus, we get from (14) that

lxe () — xTI* < Co(a)
with

. ACpIH
C=c|<"|>?+C .
1P+ C+ = -

Remark. The condition (7) with the choice u = 2 was already used in [4], and
such a function ¢ was called a qualification of the regularization method.

Example 2.4. In the case of Tikhonov regularization, given by (1), we have
re(A) = ﬁ and therefore we get for the error function 7, defined by (3),
the expression 7, (1) = ﬁ So, clearly, 7 () = ;11 and all the conditions of
Definition 2.1 are fulfilled.
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(i) To recover the classical equivalence results, see [10, Theorem 2.1], we set
¢(a) = a®” for some v € (0, 1) and find that the condition (7) with A = 1
is for every p > v fulfilled, since we have

aZp.)\‘Zv aZM—ZU )\‘Zv

< 2v
(Ol _I_)\’)Zpb - (a _i_)L)Z;L—Zv (ot—l—k)z"a

<a® = g(a)

p(W)Fy (M) =

for arbitrary o > 0 and A > 0.
Thus, Proposition 2.3 yields for every v € (0,1) the equivalence of
Ixe () — x> = O(@*") and e(1) = OG*).
(ii) Similarly, we also get the equivalence in the case of logarithmic conver-
gence rates. Let 0 < v < pu < 1 and define for @ € (0, e #] the
function ¢(a) = |loga‘_v (for bigger values of «, we may simply set

o(a) = go(e_ﬁ)). Then, we have

o2 o+ A
(@7 () = : (v ~ 24 [log. )

2(u |logk‘ — )
(o + )\)Z;L-i-l |10g)h‘v+l =

forall A € [a, e_ﬁ). Thus, @7 is decreasing on [«, e_i), which implies
(7) with A = 1.

So, Proposition 2.3 tells us that |[x, (y) — M2 = O(|loga‘_‘)) if and
onlyif e(A) = O(‘logk}_v).

3. Convergence rates for noisy data

We now want to estimate the distance of the regularized solution x4 (y) to the
minimum-norm solution x' if we do not have the exact data y, but only some
approximation y of it.

In this case, we consider the regularization parameter « as a function of the
noisy data y such that the distance between x, (y) and x' is minimal. Thus, we
are interested in the convergence rate of the expression infy~¢ [|Xy(¥) — x| to
zero as the distance between y and y tends to zero. We therefore want to find an
upper bound for the expression SUPjeRs (y) infy~o [|x () — x"||, where Bs (y) =
{y € Y|y — yll < 8} denotes the closed ball with radius § > 0 around the
data y.

Let us first consider the trivial case where [|x,(y) — xT|| = 0 for all « in a
vicinity of 0.

Lemma 3.1. We use Notation 2.2 and assume that there exists an € > 0 such that

lxe(y) —x'|| =0 foralla € (0,¢].
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Then, we have

2
sup inf |[x,(») —x? < p—82, (15)
}761—38(}’) o> &

where p > 0 is chosen as in Definition 2.1 (i).

Proof. Lety € Bs (y) be fixed. Then, using that Lr, (L*L) = ro (LL*)L, it follows
from Definition 2.1 (i) that
- - - 8?
1% G) = xa W) = {7 =y G (LLYLL* G = )) < 8° maxarg (1) < p*—.
) (16)
The right hand side is uniform for all y € Bs(y). Thus, picking o = ¢, we get

s\ p?
sup mf % ) — xT|1* < lnf (lea(y) — T +p—> <25
FeBs () * Vo €
which is (15). O

In the general case, we estimate the optimal regularization parameter « to be
in the vicinity of the value a5, which is chosen as the solution of the implicit
equation (17) and is therefore only depending on the distance § between the
correct data y and the noisy data y.

Lemma 3.2. We use again Notation 2.2 and consider the case where || x4 (y) —
x'|| > 0 foralla > 0.
If we choose for every § > 0 the parameter a5 > 0 such that

o510y () — x"|* = 82, (17)
then there exists a constant C; > 0 such that
82
sup 1n% |xe () — x 12 < Cl— forall§ > 0. (18)

y€Bs ()

Moreover, there exists a constant Cy > 0 such that

52
sup inf ||lx, () — x'||* > Co— (19)
yeBs() os

for all § > 0 which fulfil that a5 € o (LL*), where o (LL*) C [0, 00) denotes the
spectrum of the operator LL*.

Proof. First, we remark that the function

IL]?
A1 (0,00) —> (0,00), Ala) =alx(y) —x'||> = f oy (1) de(2)
0



528 (&) V.ALBANIETAL.

is, according to Definition 2.1 (iii) together with the assumption that ||x, (y) —
x'| > 0 for all @ > 0, continuous and strictly increasing and satisfies
limy_0 A(e) = 0 and limy_, oo A(ar) = 00. Therefore, we find for every § > 0
a unique value o5 = A71(8?).

Let € Bs(y). Then, as in the proof of Lemma 3.1, see (16), we find that

2 29°
e () = % D" = 07—
From this estimate, we obtain with the triangular inequality and with the
definition (17) of a5 that

2 T 5 2 282
sup inf [lx () — "I < inf (v () — 5T+ p—= ) = 1+ 0P,
FeBs(n) Ve s

which is the upper bound (18) with the constant C; = (1 + 0)>.
For the lower bound (19), we write similarly

%) — x> = llxa () — xT 1 + 1% F) — xa W) 117
+2 (% (7) — % (1), Xa () — x7)
= llxa () — x"II> + (7 — 3 7L LL)LL* (G — )
+2(ra (LL*) (G — y), ra (LL*)LL*y — y). (20)

Now, from the continuity of 7,; and Definition 2.1 (iv), we find that for every
8 > 0 there exists a parameter as € (0, as5) such that 7o, (as) < p.

Then, the assumption o5 € o (LL*) implies that the spectral measure F of the
operator LL* fulfils F45,245] # O.

Suppose now that

zZ5 = F[a5,2a5](rot5 (LL*)LL*)} - )’) 7& 0. (21)

Then, choosing y = y + § 2 > equation (20) becomes

Hz |

N 82 28
1% ) —=x"11? = llxe () —x"|1? TR ”2<Za,r (LL*)LL*z§)+m(ra(LL )25, 25).

Thus, we may drop the last term as it is non-negative, which gives us the lower
bound

sup 1nf lxa () — x 12 > 1nf <||xo,(y) —xT)? —|—82 mm AT (A))
yebs(n helas 23]

Since we get from Definition 2.1 (ii) the inequality
(1= VR@®)® _ (1= VFala)’

A - 2005

for all A € [as, 2as],

AR (L) =



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION e 529

we can estimate further

(EN)

sup inf ||x4(7) — x"||? > inf <||Xa()’) — x> + 82
0 a>0 205

yeBs(») 4~
Now, since o > 74 (1) is for every A > 0 increasing, see Definition 2.1 (iii),
the first term is increasing in «, see (6), and the second term is decreasing in .
Thus, we can estimate the expression for o < a5 from below by the second term
at @ = a5, and for o > ;s by the first term at @ = o:

(l—mf}

sup inf [|xg(7) — x'||* > min {nxms (y) — x'||%, 8%
0 205

yeBs(») *”
_U-Vp?#
— 2 a8 5
which is (19) with Co = (1 — /5)>.
If z5, as defined by (21), happens to vanish, the same argument works with an

arbitrary non-zero element z5 € R(F[45,2¢5]) since the last term in (20) is zero
fory=y+ 82 ]

llzsll*

From Lemma 3.1 and Lemma 3.2, we now get an equivalence relation between
the noisy and the noise-free convergence rates.

Proposition 3.3. We use Notation 2.2. Let further ¢ : [0,00) — [0,00) be a
strictly increasing function satisfying ¢(0) = 0 and

p(ya) <g(y)p(a) foralla >0, y >0 (22)

for some increasing function g : (0,00) — (0, 00).
Moreover, we assume that there exists a constant C > 0 with

7 G
f()fC(p(a) forall0 <a < B <X (23)
rg(X) »(B)
and there is a constant C such that
= o i
fa( ) thp(a) forall0 <X <a <. (24)
(L) (B)
We define
82

P(a) = Vap(a) and Y(8) = (25)

Then, the following two statements are equivalent:

(i) There exists a constant ¢ > 0 such that

sup inf [|x,(5) — x| < cy(8) forall§ > 0. (26)
yeBs(n) *”

g1
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(ii) There exists a constant ¢ > 0 such that

|xe (v) — X1 < cp(a) foralla > 0. 27)

Proof. We first remark that (22) implies that ¢(y«) < \/yg(y)¢(«), and so by
setting g(y) = /vg(y), 6 = ¢() and y = g(y), we get
g @e®) < g7 7).

Thus, we have

~2¢2 ~2¢2
- ) Y8 -
V() = —F - S = h(y)¥ (5) (28)
TG T ;e e
where h(y) = lzy)
In the case where %« (y) — xT|| = 0 forall @ € (0,¢] for some & > 0, the

inequality (27) is trivially fulfilled for some ¢ > 0. Moreover, we know from
Lemma 3.1 that then the inequality (15) holds, which implies the inequality
(26) for some constant ¢ > 0, since we have according to the definition of the
function v that ¥ (8) > a8 for all § € (0,8y) for some constants a > 0 and
30 > 0.
Thus, we may assume that ||x,(y) — x7|| > 0 for all @ > 0.
Let (27) hold. For arbitrary § > 0, we use the regularization parameter o
defined in (17). Then, the inequality (27) implies that
2
— =< cp(as).
s

¢! (%) < as,

and therefore, using the inequality (18) obtained in Lemma 3.2, we find with
(28) that

Consequently,

2
sup 1nf0 % ) — x"I* < C18— < Cicyr (j;) < Clﬁh(ﬁ)l/f(rs),
yeBs (y) ¢
which is the estimate (26) with ¢ = Clih(%@).

Conversely, if (26) holds, we choose an arbitrary § > 0 such that o5 defined by
(17) is in the spectrum o (LL*). Then, we can use the inequality (19) of Lemma
3.2 to obtain from the condition (26) that

2
Co— =< cyr ().
os

Thus, by the definition of v, we have

o c
d) < —asg.
@ ()_Coaa
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So, finally, we get with (22) that
12 82 c c c .
llxes () — x71" = = c? (C—Oaa) =< C—Og(c—o)cp(as),

and since this holds for every § such thatas € o (LL*), we have with¢ = CLO g(cio)
that

l|lxe () — x'|2 < ep(e) foralla € o (LL¥). (29)

Finally, we consider some « ¢ o (LL*), o < ||L||%, and set

a_ =sup{@ € o (LL*) U{0} |& < @} and

ar =inf{a@ € o(LL") |&@ > a}.
Then, recalling that o (L*L)\ {0} = o (LL*)\ {0}, see for example [6, Problem 61],

we find fora— > 0 (foro— = 0, the first term in the following calculation simply
vanishes) that

o IL12
% (y) — xT|* = / 7y (M) de(h) + / 7y (A) de(r)
0 o4
-
S R sup ]; ((;)

7o (A
e, ) =P sup 22
relasL?) Tar (V)

Using the conditions (23) and (24), we have with (29) that

: pl@ . ¢(a) "
I () = "11* < Zopla) o o+ Clplory) ) = Ct @,
which is (27) with ¢ = (C + D)&. O

Remark. If we consider Tikhonov regularization, then we can ignore the con-
ditions (23) and (24) in Proposition 3.3 if we have a quadratic upper bound on
the function g in (22).

Indeed, let ¢ : [0,00) — [0, 00) be an arbitrary increasing function fulfilling
(22) for some increasing function g : (0,00) — (0, 00) which is bounded by

C
gy = A+ y?) forally >0 (30)

for some constant C > 0. Then, conditions (23) and (24) are fulfilled for the
error function 7, of Tikhonov regularization, given by 7, () =
To see this, we remark that for 0 < o < S, the ratio

fa(A) (gﬁ+k)2
7g(L)  \Ba-+i

_at
(a+2)*"
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is decreasing in A. Therefore, for A > B we get that

WO)_ 4 4 C _ g@
D) T A+52 714827 gy T eB)

which is (23).
We similarly find for A < « that

which is (24) with C =

Fa () >1(1+z>2>1>1m
rp(A) 4 B) ~ 47 40B)

1
3

We want to apply this theorem now to the two special cases discussed
previously in Example 2.4.

Example 3.4. (i) In the case of Example 2.4 (i), where we considered

(ii)

Tikhonov regularization with a convergence rate given by (@) = o?”

for some v € (0, 1), the condition (22) in Proposition 3.3 is clearly fulfilled
with g(y) = y?. In particular, g satisfies that g(y) < 1 + y?2, which is
(30) with C = 4, and thus the conditions (23) and (24) in Proposition 3.3
follow as in the remark above.

So, we can apply Proposition 3.3 and it only remains to calculate

~—1 2 22 _4v

7 (8) = 62w+ and 1//(3) = 5% vl = §vH1,
Thus, we recover the classical result, see [10, Theorem 2.6], that the con-
vergence rate ||x,(y) — x'||> = O(a?") for the correct data y is equivalent

~ A
to the convergence rate SUPjeRs (y) infy~o0 |xe (¥) — T2 = O@»+1) for
noisy data.
Next, we look at Tikhonov regularization with the logarithmic conver-
gence rate

@ loger| ™" if0 <o < e (1Y),

o) =

4 A+v)™"V ifa>e 0+

see Example 2.4 (ii). First, we remark that ¢ is concave. This is because ¢
is increasing, constant for & > e~1+"), and for 0 < a < e~(*) we have

¢" (o) = % ‘loga|_(v+2) (14 v —|loge|) <0,

and because ¢(0) = 0, we have
o(ya) <ye(a) forally >1, a > 0.

Thus, using that ¢ is increasing, the requirement (22) in Proposition 3.3 is
tulfilled with

1 ify <1,

gy) = {y ity > 1.
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In particular, this function g satisfies the inequality (30) with C = 4 and
therefore, also the conditions (23) and (24) in Proposition 3.3 are fulfilled
according to the previous remark.

To get the corresponding function v, as defined in (25), we have to solve

the implicit equation § = @(%), where ¢ is defined in (25) and with the

“Vfora < e (V) gatisfies @2 (o) =

specific choice of () = ‘logoz
o [loga| ™. This equation then reads as follows:
2 |-V

log ——

8) =
v (9) o)

(31)

By solving this equation for 8, we get

1
5= VY ®) exp (— - ) ,
207 (6)

which, in particular, shows that the function v is increasing and further-
more, because of lims o ¥ (8) = 0, ¥ (8) < 1 for sufficiently small § > 0.
Therefore, we find for small § > 0 that

5 < exp (— } ), thatis ¥ (8) > |2logd|™". (32)
2¢rv ()

Moreover, if we write ¥ as
¥ (8) = [logs| " f(6)

for some function f, the implicit equation (31) becomes

v

log$
log(f(8)) — 2log s — log(|logs|")

log(|logs|")
logé

f) =

Since limg o = 0, we find parameters ¢ € (0,1) and § € (0, 1)

such that we have forall § < §j the inequality 0 < log(|log ) } “Y<e |10g ) ‘ .
Assuming that f(§) > 1 gives

8) < |log 8| b _ 1 -1
~ \log(f(6)) + (2 —¢) |10g6‘ —2—-gy

which is a contradiction to the assumption. Thus, f(8) < 1.
Since we know already from (32) that f(§) > 27", it therefore
follows from Proposition 3.3 that the convergence rate ||xq(y) — x|

= O(‘loga‘_v) is equivalent to SUPjeRs (y) info~o0 |%e(y) — 2 =
O(|logs| ™.
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4. Relation to variational inequalities

Instead of characterizing the convergence rate of the regularized solution via the
behavior of the spectral decomposition of the minimum-norm solution x', we
may also check variational inequalities for the element x', see [7, 8,11, 12]. In
[1], it was shown that for Tikhonov regularization and convergence rates of the
order O(a?”), v € (0, 1), such variational inequalities are equivalent to specific
convergence rates.

In this section, we generalize this result to cover general regularization
methods and convergence rates.

Proposition 4.1. We consider again the setting of Notation 2.2. Moreover, let ¢ :
[0, 00) — [0, 00) be an increasing, continuous function and v € (0, 1).

Then, the following two statements are equivalent:
(i) There exists a constant C > 0 with

e(A) < Cp*"(A) forall A > 0. (33)
(i) There exists a constant C > 0 such that

(x",x) < Cllo@*D)x|I"IIx'™  forall x € X. (34)

Proof. Assume first that (34) holds. Then, we have forall A > 0
IEx"1I” = (xT, Ejox")
< Cllo(L*L)Ejox"II” | Ego apx 11
< Co" W1 Ego,x I,

which implies (33) with C = C2.
On the other hand, if (33) is fulfilled then we can estimate for arbitrary A > 0
and every x € X

|(Eto,a1x",%)| < IEo,a1x" l1xl < v/Co”(A) %], (35)

Furthermore, we get with the bounded, invertible operator T = ¢ (L*L) |R(E(, o))
that

(Eracox’s x)| = [{T7"Era,00%", TE(a 00))|

IL1I?
< I TE (A 0],/ lim
A,00) el0 JA—¢ 902()\)

Integrating by parts, we can rewrite the integral in the form

I’ e(ILI®)  e(A—e) /“L”z e(A)
de()) = — +2
/A_g 20 Y= 2mm T 2aze T P

de(A). (36)

de(A).
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Using now (33) and dropping all negative terms, we arrive at

LI C C 1 ¢
lim / — o~ de() < —— ot 22 =55
el0 Ja—e @*(A) P> (IILIF) 1 =v e =*"(A) — ¢*7*V(A)

with the constant ¢ > 0 given by ¢ = C(1 + = ) Plugging this into (36), we
find that

(Era,c0x’,%)| < lp(L*L)x]. 37)

_°c
pl=v(A)
We now pick
=inf{l > 0| |(E[0;»]xT x)‘ > 1 |(xT x)!}
and assume that A > 0; otherw1se( ) = 0 and (34) is trivially fulfilled. Then,
the right continuity of A > (Ejg;)x", x) implies that
1
[{Eroaie’,2)| = = (" 2)]
Moreover, we have that
1
[(Epro0xs )] = [ 2] = [{Brope”, 2] > 2 [, ]

for every A € (0, A). Therefore, the left continuity of A <E[;L,Oo)xT, x) implies
that

1
oo’ 3 = & ).
Thus, we get with the estimates (35) and (37) that
(') < 2 [{Eroarx” 1) [{Braoox” )"
<207 @ Dl lx] .
]

We remark that the first part of this proof also works in the limit case v = 1,
which shows that (34) implies (33) for v = 1 as well.

Corollary 4.2. We use again Notation 2.2. Let further ¢ : [0,00) — [0,00) be
an increasing, continuous function and v € (0,1].
Then, the standard source condition

x" € Rip"(L"L)) (38)
implies the variational inequality
(x",x) < Clo@*D)x|I"|1x)'™"  forallx € X (39)

for some constant C > 0.
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Conversely, the variational inequality (39) implies that
x" € R(y(L*L))

for every continuous function ¥ : [0,00) — [0,00) with v > cp" for some
constant ¢ > 0 and some . € (0,v).

Proof. If x" fulfils (38), then there exists an element @ € X with
(", %) = (@, 9" @*D)x) < lollle” T*Dx]. (40)
Using the interpolation inequality, see for example [3, Chapter 2.3], we find
(x",x) < llolllo L Dx] Ix) ',

which is (39) with C = ||w].

If, on the other hand, (39) holds, then, according to Proposition 4.1 there
exists a constant C > 0 such that e(A) < Cp?”(1). Now, similarly to the proof
of Proposition 4.1 we get with T = ¥/ (L*L)|R (g4 ) that

T
(Ecao00x™, %) < (T7'E(a,00x", TE(A,00)X) < ||TE(A,oo)x||\// 20 de(n),
A

and, using the lower bound on , that

LI LI { e 2
/A U2(1) de(d) = c_z,/A Q2 (R de(d) = & (LI,

for some constant ¢ > 0. So,
(x,x) = lim (Eqac0x",x) < " (ILID 1Y (L*Lx])

which implies that x" € R(y (L*L)), see for example [11, Lemma 8.21]. O

Remark. In general, the inequality (39) does not imply the standard source
condition (38). Let us for example consider the case where we have an increasing,
continuous function ¢ : [0,00) — [0,00) with ¢(0) = 0, ¢(A) > 0 for all
A > 0,and

c@?’ (L) < e(h) < Cp?’ (1) foralla >0

for some constants 0 < ¢ < C.

Now, the standard source condition (38) would imply that we can finda & €
N(@)* with x" = ¢"(L*L)&. Thus, we would get with T = ¢"(L*L)|R (&, .,)
that

Iz

€11 = lim [Ea00él? = lim [T Epc0x'|? = lim de().
A—0 A—0

A0 Jp 9P (M)
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However, in the limit A — 0, we have that

e e(ILI?)  e(A) /'L“z e(X)
de()) = — +2 ——— de(r
f 200 P = T T2 iy W
¢<||L||2)>
— C+2vcl ,
>c + 2vc og( o(A) —

which is a contradiction to the existence of such a point &.

5. Connection to approximate source conditions

Another approach to weakening the standard source condition (38) in order to
obtain a condition which is equivalent to the convergence rate was introduced
in [9], see also [4]. The idea was that for the argument (40), which shows that the
standard source condition (38) implies the variational inequality (39), it would
have been enough to be able to approximate the minimum-norm solution x' by a
bounded sequence in R(¢"(L*L)). And, the smaller the bound on the sequence,
the smaller the constant C in the variational inequality (39) will be. Therefore,
the distance between x™ and R(¢"(L*L)) N Br(0) as a function of the radius R
of the closed ball Bg(0) = {x € X|||x|| < R} should be directly related to the
convergence rate.

Definition 5.1. In the setting of Notation 2.2, we define the distance function d,,
of a continuous function ¢ : [0, 00) — [0, 00) by
dy(R) = inf |lx" —@(L*D)E|. (41)
§€BRr(0)

Indeed, this distance function gives us directly an upper bound on the error
between the regularized solution x, (y) and the minimum-norm solution x7, see
[9, Theorem 5.5] or [4, Proposition 2]. For convenience, we repeat the argument
here.

Lemma 5.2. We use Notation 2.2 and assume that ¢ : [0,00) — [0,00) is an
increasing, continuous function with ¢(0) = 0 so that there exists a constant A > 0
such that the inequality

Ta(Mp(A) < Ap(a) foralli >0 (42)

holds for every o > 0.
Then, we have for every & € X that

Ixa () — X'l < lIx" — (D& || + Ap() €]l foralla > 0. (43)

Proof. For every vector £ € X, we find from (5) with the definition (3) of the
error function 7, that

lxe (M) —xT| = 172 L*L)x"|| < 1173 (L*L) (x" —o(L*L)&) | + 172 (L*L)p(L*L)& |-
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Now, since 7 (1) < 1, we have that |7, (L*L)|| < 1. Moreover, with e (1) =
|E(0,11€ ||%, we get from the inequality (42) that

1 IL|?
172 (L*)p(L*L)& ||* = f T M@2 (L) des (1) < A%*(@) 1€ 1%
0
So, putting the two inequalities together, we obtain (43). O

Thus, taking the infimum overall & € Br(0) in (43), the error || x4 () —xT| can
be bound by a combination of dy,(R) and ¢(«)R. By balancing these terms, we
obtain from a given distance function d,, the corresponding convergence rate.

Conversely, we can also show that an upper bound on the spectral projections
of the minimum-norm solution gives us an upper bound on the distance func-
tion, which then yields another equivalent characterisation for the convergence
rate of the regularization method.

Proposition 5.3. We use Notation 2.2 and assume that ¢ : [0,00) — [0, 00) is
an increasing, continuous function with ¢(0) = 0 so that there exists a constant
A > 0 with

Ta(Mp(L) < Ap(a) forallh >0, o > 0. (44)

Moreover, let d,, be the distance function of ¢, and let v € (0, 1) be arbitrary.
Then, the following statements are equivalent:
(i) There exists a constant C > 0 so that

e(A) < Cp?” () forallx > 0. (45)
(ii) There exists a constant C > 0 so that
d,(R) < CR"T™ forallR > 0. (46)

Proof. Assume first that (46) holds. Then, from Lemma 5.2, we get by taking the
infimum of (43) over all £ € Br(0) for an arbitrary R > 0 that

1% () — x| < dp(R) + Ap(@)R < CR™T7 + Ag(a)R.

Since the first term is decreasing and the second term is increasing in R, we pick
for R the value R(«) given by

R_ﬁ(oz) = ¢(@)R(x), thatis R(a) = ¢ 17V (a).
Thus, we end up with
I (y) = XTIl < (C+ A)p" (@).

Applying Proposition 2.3 with the function ¢, therein replaced by ¢’ (we
remark that the condition (7) is then fulfilled with © = v, since (44) implies
% M1y (r) < A% ¢? () we find that there exists a constant C > 0 so that (45)
holds.
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Conversely, if we have the relation (45), then we define for arbitrary ¢ > 0
with the operator T = ¢(L*L)|R (g, the element

£y = T 'Ego0)x’.

Now, the distance of ¢(L*L)&, to the minimum-norm solution x' can be
estimated according to (45) by

Ix" — p(L"Déa|I* = I1Ejparx’ I = Cp™ (0). (47)
Moreover, we can get an upper bound on the norm of &, by
=1 e(ILIP) _ ef) I e(x)
I5aI? = / de(r) = - + 2/ de(2).
« 93 e*(ILI») ¢ (@) « PO

Using assumption (45), evaluating the integral, and dropping the resulting two
negative terms, we find that

C 1 c

2 < <
I8 ll” = g02_2”(||L||2) + 1— UgDZ_ZU(Ol) - g02_2”(0l)

(48)

with ¢ = C(1 + 1Tlu .

So, combining (47) and (48), we have by definition (41) of the distance
function d, with R = co~ 1) (@) that

dy(cp™ """ (@) = VCp" (@),
and thus it follows by switching to the variable R that

where C = /CcTv. O

6. Conclusion

In this article, we have proven optimal convergence rates results for regulariza-
tion methods for solving linear ill-posed operator equations in Hilbert spaces.
The result generalizes existing convergence rates results on optimality of [10]
to general source conditions, such as logarithmic source conditions. The results
state that convergence rates results of regularised solution require a certain decay
of the solution in terms of the spectral decomposition. Moreover, we also provide
optimality results under variational source conditions, extending the results of
[1]. It is interesting to note that variational source conditions are equivalent to
convergence rates of the regularized solutions, while the classical results are not.
Moreover, we also show that rates of the distance function developed in [4, 9]
are equivalent to convergence rates of the regularized solutions.
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